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The original problem of group testing consists in the identification of defective items in a collection, by applying
tests on groups of items that detect the presence of at least one defective item in the group. The aim is then to
identify all defective items of the collection with as few tests as possible. This problem is relevant in several fields,
among which biology and computer sciences. It recently gained attraction as a potential tool to solve a shortage of
COVID-19 test kits, in particular for RT-qPCR.

However, the problem of group testing is not an exact match to this implementation. Indeed, contrarily to
the original problem, PCR testing employed for the detection of COVID-19 returns more than a simple binary
contaminated/non-contaminated value when applied to a group of samples collected on different individuals. It
gives a real value representing the viral load in the sample instead. We study here the use that can be made of this
extra piece of information to construct a one-stage pool testing algorithms on an idealize version of this model. We
show that under the right conditions, the total number of tests needed to detect contaminated samples diminishes
drastically.
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1. Introduction

The group testing problem consists in identifying a subset of defective items among a larger set by
using tests on pools of items answering the question “Does this pool contains at least one defective
item?”. This problem has a long history, and appeared several times in different fields of medical
biology [9, 25, 24, 10] and computer sciences [19, 15, 1]. It has also been the subject of an important
mathematical literature, which studied optimal algorithms for the detection of defective with minimal
use of tests, which are considered a limiting resource. Those algorithms can be divided into two main
categories:

adaptive testing: in which the choice of a pool is influenced by the previous results of tests applied to
the group;
non-adaptive testing: in which the choice of a pool does not depend on the results of previous tests.

The aim of a pool testing algorithm is to assess, as precisely as possible, the status (defective or not) of
each item, through the tests made on pools of individuals, while using as few tests as possible.

It should be clear that the more permissive adaptive testing option allows for more flexibility, a more
parsimonious use of tests can thus be archived in this setting. At one extreme, a search tree can be
used to detect defective items with a maximal economy of tests [7]. In contrast, non-adaptive testing
allows the possibility to massively parallelize the procedure. As all pools can be constructed before
any result is known, all tests can be performed simultaneously, which can decrease the time needed to
obtain the result. Moreover, in the context of biological testing, non-adaptive schemes decrease the risk
of contamination or of decay of samples during their treatment.

It might be noted that several types of adaptive testing allow some level of parallelizing. For ex-
ample, two- or three-stages algorithms can be considered. In this situation, a first set of pools is con-
structed without prior information. Using the result of testing on these pools, a second set of pools is
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constructed. With the tests made on this second set of pools, the status of each item is assessed in a
two-stage algorithm, or a third set of pools is constructed and tested in a third stage algorithm, before
assessing the status of the items.

One of the first pool testing algorithm to be describe was introduced by Dorfman [9], as a method
to detect syphilis in recruited US soldiers. This algorithm is the following: samples taken from indi-
viduals are pooled together in a group, which is then tested for syphilis. If the pool turns negative, all
individuals are declared non-contaminated, while if the pool turns positive, then each individual of the
pool is tested. Note that this is a two-stage algorithm, which we refer to as Dorfman’s algorithm.

Several adaptive and non-adaptive pool testing algorithms have been described over the years, such
as matrix testing [8], smart testing [24], and testing based on risk estimation for items [2, 4]. We refer
to [1] for a recent survey on this topic. To compare these algorithms, it is necessary to specify more
precisely the context in which they are used, such as the relative number of defective and non-defective
items, the authorized false positive and false negative rates, etc.

Prevalence and efficiency of pooling procedures. As stated above, the objective of pool testing is
the reduction of the number of tests used on a population of N items in order to identify the defective
ones. If an algorithm uses a total of 7" tests, we measure its resource-based efficiency by the quantity

E= N
This ratio measures the average number of tests used per item in this pool testing algorithm to detect
the defective ones. Therefore, the lower this ratio is, the more parsimonious the algorithm.

Observe that any reasonable algorithm of pool testing should verify I < 1, as otherwise the testing of
any individual separately represents a more efficient use of resources. In the present article, we assume
that a known proportion p of items is defective. It is worth noting that in that situation, a lower bound
on the efficiency of a reasonable non-adaptive pool testing algorithm is E(p) > p. Indeed, there are
approximately p/N defective items among N, so if one makes less than pN tests, there is no possibility
to detect the defective items if all pools contains at least one defective. One is interested in the optimal
dependency of E in the parameter p.

The optimal efficiency of the Dorfman algorithm previously described is obtained by choosing the
size of the pool depending on the value of p in such a way that it is minimal. It can be computed as
follows

1/2

ED(p) — min 1+ Tl(l — (1 7p)n)

as p — 0. (1.1)
neN n

~ 2p
Indeed, if one creates pools of n individuals, one test is required for the pool to detect if defective
items are present or not, and if the pool is positive (which happens with probability 1 — (1 — p)™), an
additional one is needed per item. The equivalent is obtained by choosing n ~ p_l/ Zasp—0.

Mézard et al. [19] constructed asymptotically optimal non-adaptive and two-steps pool testing algo-
rithms, which detects asymptotically all defective items, while keeping an efficiency of

E*(p) ~ Cspl|logp| as p — 0, (1.2)

for some C > 0. This algorithm is based on the construction of random pools of size n ~ c% of items,
such that each item belongs to L ~ C|log p| pools. An item is declared non-defective if it belongs to
at least one pool tested negative, is declared defective if it belongs to at least one positive pool with all
the other items being declared non-defective, and is declared ambiguous otherwise. In that situation,
depending of the value of ¢, C, either with high probability each defective item will belong to at least
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one pool of non-defective items, and thus be identified as non-defective, or with high probability, the
number of ambiguous items after the first stage is small enough that they can be tested individually.

Pooling in the context of the COVID-19 epidemics. In the context of COVID-19, pool testing has
been massively proposed and implemented as a method to diminish the marginal cost of a test as well
as to answer local shortages of test kits, see for example [4, 12, 22, 3, 14, 23, 17, 13, 20, 26, 18] among
many others. The necessity of early detection of contaminated individuals has been underlined many
times, in particular due to the large number of presymptomatic, asymptomatic and mildly symptomatic
individuals that remain contagious and can carry the diseases to vulnerable people. As a result, the
demand for effective and quick testing has skyrocketed, with the offer being limited by the number of
test kits and trained medical professionals for the sampling. The question of optimization of pool testing
thus has practical consequences, as improving on the efficiency of a testing algorithm can increase the
number of individuals that can be tested with the same number of kits.

A typical test used for the detection of contamination to SARS-COV-2 is the RT-qPCR test (or PCR
test for short), the reverse-transcriptase quantitative polymerase chain reaction. This test allows the
measurement of the number of RNA segments typical of the virus that are present in a given sample.
As the name suggest, the measure is quantitative, thus returns more than binary response (which would
be akin to a defective/not defective result in the classical pooling literature). As such, it seems that this
additional piece of information could be used to improve on the existing group testing strategies to
reduce the the number of tests needed for detection.

However, let us underline a couple of important caveats. First, the quantity measured by the PCR
test is related to the logarithm of the viral load carried in the sample, rather than the viral load itself,
with some noise on the measure [5]. Therefore the exact viral load is not known, but rather its order
of magnitude. Secondly, the viral load in defective individuals spans a large spectrum of orders of
magnitude [16]. Therefore, if two defective individuals with viral loads ¢ and co are tested in the
same pool, the result of the measure will be

log(c1 + ¢2) ~ max(log ey, log o), (1.3)

as c1 and cp will typically be of different orders of magnitude.

The aim of this article is to propose and study an algorithm that uses the viral load of an individual to
improve its efficiency. We construct this algorithm on an idealized version the the situation described
above. We discuss in Section 8 the adaptation of the algorithm to the COVID scenario, pointing some
of its limitations.

Defective items with load. We consider in this article some theoretical aspects of pooling strategies
that can be employed for the detection of defective items with load, in order to adapt to the PCR testing
scenario previously described. We assume here that each defective item wu is associated to a positive
value z,, that we call its load. A non-defective individual will have a load of 0. The test of a pool A of
individuals has the effect of measuring the value max,,c 4 4, i.e. the largest load among all individuals
in the set A.

Observe that if the load of individuals belongs to {0, 1}, then we are in the settings of the classical
pool testing, and a test only detects the presence of at least a contaminated individual. However, if this
load can takes more values, we show that the results of several tests can be crossed to extract additional
information on the individuals. The load z,, can be thought of as the logarithm of the viral load of an
individual in PCR settings, and the choice of measuring the maximal load of a set comes from (1.3).

We denote by p the prevalence of defective items (i.e. the proportion of defective items in the set
to be tested). We assume here that p is known (or at least adequately estimated), so it can be used to
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choose the size and number of pools to be made. The load associated to each individual can then be
written as x,, = &, Zy, where &, is a Bernoulli random variable with parameter p representing the fact
that individual u is defective or not, and Z,, is an independent [0, 1]-valued random variable. In this
article we will consider Z,, uniformly distributed either on [0,1] or on {1/K,2/K,...,1} for some
KeN.

The quantity K described above can be interpreted as the level of precision of the measure. The
larger K is, the easier it is to distinguish the level of two defective individuals with similar loads. As a
result, the efficiency attained by our algorithm will decay as K increases, to attain optimal efficiency
when K = oo, which corresponds to Z,, uniformly distributed on [0, 1].

Organization of the paper. We study here a one-step (non-adaptive) algorithm for the detection of
defectives, sometimes under the assumption that the same sample cannot be placed in more than L
pools. We aim for asymptotically efficient algorithms as p — 0 that remains simple to implement and
evaluate. We describe in the next section the general form of the algorithm we study. We then show how
to optimize this algorithm assuming that each sample can only be part of a finite number of pools in
Section 5, and optimal efficiency that can be obtained by this algorithm in Section 6. We then provide
some numerical simulations to compare these asymptotic results to their finite value counterpart in
Section 7.

2. The Grid Pool Testing algorithm

In this work, we focus on a simple one-step non-adaptive algorithm. In this algorithm items are orga-
nized on a grid, and the pools are made on lines, columns and diagonals. The algorithm mainly focus
on reconstructing the status of items from the measures made on these diagonals. The parameters of
the algorithms to optimize are the size of the grid the number of pools each item belongs to.

Defining the grid. Before describing the algorithm in more details, we introduce some notation. We
assume the number of items to test to be sufficiently large that it is possible to divide them into batches
of n? items. We describe the algorithm on a given batch.

The items are dispatched on a grid n X n, with each item being identified by its position (i,75) €
{1,...,n}%. We write &,; = 1if (i,7) is defective and ; ; = 0 otherwise. Moreover, if &; ; = 1, we
denote by X ; the load of each item (which is 0 if the individual is non-defective, or a number in
(0, 1] otherwise). With the modelling of the previous section, we note that (§; ;,1 <i,j <n) are i.i.d.
B(p) random variables, with p the proportion of defective. Conditionally on &, (X; j,1 <1i,j <n) are
independent random variables, with X; ; =0 if §; ; = 0 and X; ; uniformly distributed on (0,1] or on
{1/K,2/K ...,1}, depending on the context.

Defining the pools. The pools used can loosely be described as the diagonals of the grid. More
precisely, we introduce the following sets of n items to construct the pools of the algorithm:

o the lines L; = {(i,k),1 <k <n},for1 <i<n.

* the columns Cj = {(k,j),1 <k <n},for1 <j<n.

+ the diagonals with various slopes Dj' = {(k,ak +bmod(n)),1 <k <n} for 1 <b < n, where
ac{l,...,n—1}.

In an algorithm constructed such that each item is part of L pools, the pools will be taken as families of
lines, columns and diagonals with slopes smaller than L — 2. In the rest of the article we will assume
this family of pools will form a NV (n2, n, L) multipool, in the terminology of [27]. In other words, we
need our pools to satisfy the following three properties:
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1. each pool contains exactly n items;
2. each item belongs to exactly L pools;
3. two items (4, ) and (k,!) share at most one pool in common.

While the first two properties are straightforward from the definition, the third one is not, and only
holds under some assumptions on n and L.

Lemma 2.1.  The family {Ly,Cy,D{,1 <k <n,a<L—2}isa N (n?,n, L) multipool if and only
if L — 2 is smaller than the smallest prime divisor of n.

Proof. We first note that two line never cross, and that a line crosses with a column or a diagonal at
exactly one point. Therefore, to verify that { Ly, Cy, D¢,1 <k <n,a < L — 2} is a multipool, it is
enough to check that no too diagonal cross at more than one place (treating columns as diagonals of
line 0).

Observe that for a # b, two diagonals Df and DZ cross at a point (4,7) such that k 4+ ai = ¢ +
bi mod n, i.e. such that (b — a)i = ¢ — k mod n. By algebra’s fundamental theorem, there exists a
unique ¢ € [1,n] satisfying this property if and only if (b — a) is prime with n. As |b —a| < L — 2 is
smaller than the smallest prime factor of n, we deduce this is indeed the case, proving that any two
pools cross at either 0 (if they have the same slope) or 1 point. O

Remark 2.2. More generally we could prove that selecting families of lines, columns and diagonals
in the n X n grid, it is possible to create a N (n2, n, L) multipool if and only if L — 2 is smaller than
the smallest prime divisor of n.

In the rest of the article, we enumerate the pools as the family {P;,j < nL}, with Py, ... P, cor-
responding to the lines, Py, 11,... Py, to the columns and the rest to the diagonals, in the increasing
order of their slope. For each ¢ < nL, the effect of probing the pool P, corresponds to the action of dis-
covering the value Vy := max(; ;) p, Xj ;. the largest load among all defective individuals belonging
to the pool. Finally, for convenience, we denote 731-7 j the set of pools associated to the individual (3, j),

P = {€:(i,7) € Pp}.

Computation of the positives. The final step of the algorithm consists in a reconstruction of the load
of each individual via the information contained in the family {Vp, ¢ < nL}. We observe immediately
that if Vy = 0, then all individuals in the pool are non-defective, and if V; = x # 0, then there exists at
least one individual in the pool with load equal to x.

To reconstruct the load of each individual, we employ the following procedure.

L. For every item (4, j), let V; j = ming.(; e p, Ve-
2. If V; j = 0, the item (4, j) is declared negative.
3. Otherwise, we count the number of apparitions of the value V; ; inside of the pools containing
(4,5) : Lij ={€: (i,j) € Ppand Vy = V; j}|.
a) If I; ; > 2, meaning that at least two tests containing item (4, j) measured it with the same
value, the item (3, j) is declared positive.

b) Otherwise, the item (i, §) is declared negative.
Here is the reason behind this definition. By assumption of the test, V; ; is an upper bound for the

load XZ-7 j of the individual. In particular, if V;y j=0,we label the individual as non-defective. However,
if Vz-,j > 0 it might be that the individual has been, by chance, mixed with defective items in all the
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tests that were made on it. The fact that level V; ; is attained at least twice is a much stronger indication
of the defectiveness of (,7), as a false positive in that case would mean that it has been by chance
mixed in two pools with different defective individuals sharing exactly the same load, and that in all
other pools, there was at least one individual with a larger load. In the asymptotic we will consider,
this will not occur with large probability, and similarly if /; ; = 1, with high probability the item will
be negative.

Remark 2.3. Observe the procedure we describe here to assess the load and status of each individual
is not the most accurate. With extra care, one could gain more precision of the reconstruction, for
example by checking that each measured load in the pools has been associated to at least one item.
However, the procedure described here has the advantage of simplicity and locality: to give the status of
an item, one has only to consider the results of the tests related to this item. This makes the forthcoming
computation of the probability that an item is wrongfully characterized significantly easier, and it
remains efficient enough in the range of parameters we consider.

We sum up the complete procedure inside Algorithm 1 and a concrete toy example in Figure 1.

Algorithm 1: Grid Pool Testing

Parameters: n,L,
Inputs: X = (X1,...,X,2)
Store X inside the grid (X; ;)1 <4, j<p line by line;

Define Pp,..., Pp asthelines, P, 1 p,  asthe columns and Pyt 1,..., Py, as the diagonals;
Initialize a matrix S = (S; ;);, j of empty lists;
for/{=1,...,nLdo
Compute Vy = max; ;e p, Xi,j;
Append Vj to every S; ; with (i,7) € Py;
end
Initialize a matrix R = (Rl} j)i, ; of zeros;
for 1 <i,j <ndo
Compute V; ; = minges, ;5
Compute [; ; = ZseSi,j l{s:Vm I
if ‘/17] 75 0 and IZ,] Z 2 then

‘ Set Ri,j =1;
end

end
Store the matrix R line by line into a vector (Ry, ..., 2);
Result: (Rq,..., R 2)

Efficiency and optimization. It is worth noting that the algorithmic complexity of Algorithm 1 is
O(nQL). In terms of test usage, it is easy to compute the efficiency of this algorithm as there are a total
of nL pools of n items that are tested, in an effort to detect defective elements among n? items. The
corresponding efficiency is then

E=—

nL_£
n2 n’
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To complete the study of this algorithm, one then need to compute its false positives (when R; j =1
implying detection as defective while X; ; = 0 so the item is non-defective) and false negatives (when
R; j = 0 whereas X; ; > 0) rates.

We denote by F'PR (respectively F'N R) the expected number of false positives and false negatives
returned by this algorithm, divided by the total number of contaminated individuals. These two quan-
tities depend on the four parameters p, i, n and L in an intricate fashion. However, note that while
n and L are integer parameter of the algorithms we can choose, p € [0,1] and K € N are modelling
parameters of the problem, representing respectively the proportion of defective items and the accu-
racy of the test. Therefore the main goal of this study is to optimize the efficiency E of this algorithm
by choosing the optimal n(p, K) and L(p, K) in a way that insures that PR and F'N R both stay
below fixed quantities € and 6. Our main results are considered under the asymptotic p — 0 of a small
proportion of defective items. But as most of the computations made are explicit before taking limits,
computing the optimal value of n and L for given values p, K remains straightforward.

Remark 2.4. Note that an item is falsely labelled as negative if it is part of at most one pool in which
it is the item with the largest load. It corresponds to items at position (i, j) such that I; ; = 1 in the
above algorithm. Therefore, items such that I; ; could be labelled as inconclusive and tested again in a
sepate batch in a two-steps algorithm.

0.5 0.25 0 0.75 0 0

0.25 0.75

0.5

Figure 1. A grid with L =3, n =6, K =4 and N = 36. There are 3 defective individuals of respective levels
0.25, 0.5 and 0.75. For the sake of clarity, we only showed the test involving the bottom leftmost individual for
the diagonal of slope 1/3 (hence five more test are not represented here). The blue circle represent the healthy
individuals whereas the black crosses represent the defective individuals for whom the level of defectiveness is
specified.
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3. Computation of the false negative and false positive rates

In this section, we give explicit upper bounds on the false negative and false positive rates of the
algorithm. This does not take into account a possible defective measurement of the loads of the pools.
The false negative rate of the algorithm is expressed as the probability that a contaminated individual
is not detected at the end of the algorithm whereas the false positive rate is the probability that a
non-defective individual is detected as defective. In Algorithm 1, it is straightforward to compute the
false negative/positive rates, as the reconstructed status of an individual only depend on the status of
individuals sharing a pool with it. This algorithm being unchanged by changing the coordinates of the
grid, as on a torus, these rates do not depend on the position (4, j) of the individual in the grid. We thus
only compute the false negative probability of item (1, 1), given its load. For all z € (0, 1], we set

FN(xz)=P((1,1) is declared negative | X1 1 = x),
and
FP(x)="P((1,1) is declared positive with load | X1 1 =0).
The false negative rate F'N R and the false positive rate F'PR are then given by

FNR(n, L;p, K) = pE(FN([KU/K))
K

FPR(n,L;p,K)=(1-p) >  FP(k/K)
k=1

with U a uniform random variable on [0,1] and the convention that [coU]/oco = U and that
FPR(n,L;p,00) = 0. We used here that a given item is defective with probability p and non-defective
with probability 1 — p. The following Proposition gives two upper bounds on the false positive/negative
rates.

Proposition 3.1. Let v = k/K and let g p(x) = (1 — p(1 — x))" L. Then it holds that

L-1

FN(z) < L(1- gnp(z)) 3.1)
and that
FP(z) < @ (%)an,p(azﬁ (1= gnp(a) =2, (3.2)

In particular, when K — oo, the false positive rate FPR(n, L;p, K) tends to 0.

Proof. We observe that the probability to wrongfully declare an item as negative depends on K (in the
discrete case) only through the fact that x takes its values in {1/K,2/K ..., 1}. This allows us to give
a unified expression for the upper bound of F' V.

Given z the load of the item (1,1), we note this item will be wrongfully declared negative in Al-
gorithm 1 if and only if I; 1 =1 (as V31 > x > 0 a.s.). Decomposing according to the test in P 1
measuring the lowest viral load, we have

FN(z)=P(Ij1 =1|X11=2)= Y P(;< ?;%W"Xl,l =z)=LE(p(Vy)|X1,1 =2),
ZG’P171



Group testing PCR 9

where ¢(y) = P(ming ., Vir > y[X11 = x) and g is a fixed element of Py ;. Using that the
(Vi,€ € P1,1) remain i.i.d. conditionally on X7 1 = x, thanks to Lemma 2.1, we have ¢(y) = P (V;, >
y|X1,1 = )" ~L. Then, using that (y) < ¢(z) for all y > z, we obtain

FN(z) < LP(Vy, > 2| X1 1 =)t 7L
As in our setting there is a proportion x of positive individuals with load smaller than x, we obtain
P(Vp<a|Xii=2)=1—p+pe)" " =(1-p(l—2))""" = gpnp(x),
which leads to the following upper bound for the false negative rate of an item with load =z,
FN(z) <L (1= gnp(z)" "

We can similarly compute the false positive rate of the algorithm by computing the probability
that conditionally on (1, 1) being non-contaminated, this item is determined to be contaminated. This
would happen if and only if (1,1) is only part of contaminated pools, and that the two pools with the
lowest measured load have the same value, that we write x. Noticing that false positive results never
occur in the infinite precision setting K = co, we assume here that K < co. Using again that we have a
multipool and that the measure of each test is independent conditionally on the value of X 1 we obtain

FP(z)= P(Il,l >2, V171 = .%'|X171 =0)
=P, b€ P11, Vi, =Vy, =2, VLEPL1\{l1, 02}, V> )
< Y PV =aXi1=0PV,=2X11=0) [ PVe=zlXi1=0)
{1 L2} 0150 2ePr,1\{€1,42}
L(L

-1 _
= %P(Vgo =2|X11=0)?P(Vp, > x| X711 =072,

with £ a fixed element of Py 1. Let F'(z) be the distribution function of V4, conditionally on X7 1 = 0.
Then, we can use the upper bound

SUP[, 1 4 F'(u)

P(Vy, = 2| X11 = 0) = F(x) — F(a — 1/K) < Fla) < 20— p(1 - )"

We finally get

- 2

FP(z) < % (%) 9p@? (1 = gupla) "2 O

In the rest of the article, we compute the optimal efficiency under different constraints, based on the
above constructed pools, in different situations. We first consider non-adaptive strategies for detection
of defective items based on the measure of lines and columns only, then adding eventually item tests
for items whose status cannot be deduced by the first step algorithm. We then aim at optimal testing
efficiency, assuming that samples can be infinitely divided, and recover results consistent with Mézard
et al [19]. In the third section, we compare our asymptotic estimates with simulated experiments,
and obtain the false positive/false negative rates and efficiency that can be archived in real testing
conditions.



10
4. Asymptotics of the false discovery rates at L fixed

In this section, we derive equivalent expressions for the upper bound of the false discovery rates when
the values of K and L remain fixed. We consider two asymptotic cases, when np — 0 and when
np — A > 0. It is implicitly assumed that n — oo and p — 0. In the second case, the calculations
are based on the Poisson approximation of the number of defective items in a specific pool and are
consequently more accurate than the rates in the first case.

Case np — 0. In this case, gp p() can be lower bounded by gy, ,(0) since it is a increasing function
and gy, 5(0) ~ e~ "P. Then

FNR < LpE(1 — gnp(U)5 ™! < Lp(1 — g5 p(0)571 ~ Lp(np) "1

The false discovery rate is then upper bounded by

rpa < I () (1 gng(0) 2~ D

In particular, we see that in this regime (as K and L remain fixed), the false negative rate is small with
respect to the false positive rate.

Case np — A > 0. In this situation, with L being fixed, we immediately obtain that the number of
defective items in each pool converges to a Poisson(\) random variable. We consider the asymptotic
behaviour of the false positive and false negative rates obtained in this situation. We write

FNR(A\ L;K)= lim pilFNR(n,L;)\/n,K) and FPR(\L;K)= lim FPR(n,L;\/n,K),
n—oo n—oo
as a function of L and the precision K.

Proposition 4.1. Under the condition np — A > 0, we have that
FNR(\, Lyoo) = (1+ (L —1)e ) (1 —e ML

and, for all K < oo,

LL-1)

FNRO\L; K)<L(1—e =1 and FPR(M L;K) < T M) b2

Proof. We first compute the false negative rate. From the properties of Poisson processes, we note that
the number of items in a pool with load between z and y is distributed as a Poisson random variable
with parameter A\(y — x), independently of the number of items in this pool with load smaller than x
or larger than y. In particular, for any given test ¢, for any y > = we have

P(V, > y| X1, =a) = (1 — e 1Y),

Using this fact, with the same computations as in Proposition 3.1, we can compute the false negative
rate of an item of load x as

FN\L;K) =LY P(Vy =y| X171 =2)P(Vp, >y[X1 1 =2)"!
y>x
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Figure 2. False negative and false positive rates as a function of L for A =log2 and K =1 (in blue), K = 2
(orange), K = 5 (green), K = 10 (red) and K = oo (purple).
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In the case K = oo the computations can be made explicit as in that case

1
FN(\ L;oo) = Le_)‘(l_x)(l — e_)‘(l_x))L_l + L/ )\e_)‘(l_y)(l — e_A(l_y))L_ldy
e—)\(l—x)(l _ e—)\(l—x))L—l +(1- e—)\(l—x))L =(1+(L- 1)6—)\(1—90))(1 _ e—)\(l—x))L—l.

In particular, we also obtain FN (X, L;00) < L(1 — e~ A1=2))L—1,

Similarly, we can compute the false positive rate of a negative item in this regime. An item is falsely
identified as a false positive if it does not belong to any pool with a negative item, and that if the
smallest non-null value observed among the pools is attained at least twice. Using similar bounds as in
the previous sections, we obtain

K
FPR(L:K) Z e M/ L
k=1
Bounding the above quantity by % (1 —e=M)L=2, we obtain the result. O
From this formula, the false positive rate can be written explicitly as the probability that among L

independent copies with the above distribution, the first and second running minimum are equal. We
plot once again this function in L for different values of K.

5. Optimizing one-step testing with L fixed

In this section, we look to optimize Algorithm 1 while assuming that the number L of tests that can be
made on each item is finite. This regime is relevant in particular if a test destroys or damages a sample
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of the item, so that limiting the number of tests made on each item becomes relevant. In the rest of
the section L is a fixed constant, and n is a number with no prime factor smaller than L — 1. In that
situation Lemma 2.1 holds and we are working with multipools, so that the formulas (3.1) and (3.2)
both hold.

Recall that the efficiency of the algorithm is E = %, therefore to improve the efficiency of the
algorithm, one has to increase the size of the grid. However, augmenting the value of n has the effect
of increasing the false positive and false negative rates. Therefore, to find the optimal efficiency of
Algorithm 1, we fix € > 0 and 7 > 0 as maximal values for the proportion of positive and negative
items wrongfully labelled as negative and positive respectively, and we choose n as large as possible
such that

FNR(n,L;p,K)<pe and FPR(n,L;p,K)<(1-p)n.

As the average number of false negatives found by the algorithm is of the order npe, we will also
consider bounds in the regime when ¢ — 0 as n — oo.

A choice of n for € and 7 fixed. In this case, one has to choose n accordingly to have L(np)L_1 <pe

and %(np)L <. The largest n that satisfies the first condition is

and the largest n that satisfies the second condition is

n=p <L(L—1)> ‘

We recommend to choose n as

1. e\1/(L—1), ;2Kn\1/L
n~p mln((L) ,(?) > (5.1)
This choice of n gives a efficiency of the algorithm given by
LY -y L¥*2 01
E¢ n(p) = pmax ((5) ;(TKW) : (5.2)

Note that these choices of values for n are driven by the results of Proposition 3.2 and hence are
quite conservative, so the efficiency obtained here is an upper bound of the true optimal efficiency of
Algorithm 1. Note that in a high precision setting (when K is large) the false positive are a minority
inside the false discovery of the algorithm, and the efficiency will depend only on p, L and €.

We observe that the number of tests to use per item to detect defective ones with fixed false nega-
tive/positive rate becomes proportional to p the proportion of true negative. In other words, the total
number of tests this algorithm need to detect defective items becomes ultimately proportional to the
number of defective items when the number of non-defective items is large. This is a notable im-
provement on pool testing with {0, 1} response, in which the known optimal asymptotic efficiency is
proportional to the product of the number of defective items and the log of the number of non-defective
ones.
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A choice of n for vanishing € and 7. Observe as well that in the settings we discuss, the expected
number of false negatives in a given grid will grow as epn? and the number of false positive as 7n?.
It may be inconvenient to let the expected number of false discovery to grow as n becomes large. To
avoid a positive proportion of items on the grid being false negatives, one could instead consider a
maximal false positive rate of £ = av/(pn?) as n — oo and = §/n?.

In this situation, with similar computations as above, we obtain optimal choices of

[ a 1/(L+1) ; B 2K 3 1/(L+2)
e LpL> A2

and the associated efficiency to L and n = min(ny, n9) is

LL+2

L(L-1
Eq(p) = max <pL/(L+1)( - )1/(L+1);pL/(L+2)((QI(B))l/(L-i-Z))

This efficiency is much larger than E. ;(p), as expected from the lower tolerance to false negatives.
It behaves as a power of p as p — 0. Remark that for L = 2, we have Eq 5(p) ~ CapQ/?’ as p — 0,
so even with these settings, the algorithm becomes more efficient than Dorfman’s method for p small
enough, to the cost of a fixed proportion 7 of false positive. For L = 3, the algorithm becomes more
efficient than Dorfman’s algorithm even with a vanishingly small number of false positive.

6. Optimal choice of L as a function of p

In this section, we relax the assumption that L has to be kept fixed, and aim at choosing an optimal
couple n, L so that the efficiency of the algorithm E = L /n is as small as possible, while controlling the
false positive and false negative rates. While it is not mentioned explicitly, it is assumed everywhere in
this section that L — 2 is smaller than the smallest prime factor of n, so that Lemma 2.1 can be applied.
Using the growth rate of primordial numbers and the fact that an optimal choice of L will remain
finite, there will always be a couple (n, L) satisfying the assumption of Lemma 2.1 close enough to
the optimal theoretical choice, so this condition won’t play a role in the asymptotic behaviour of the
obtained efficiency.We first investigate the case when the precision of the loads K is infinite so that the
choices of n and L are only driven by the reduction of the false negatives in the algorithm.
We take interest in the quantity

E*(p) := min{%,n,LeN;FNR(n,L;p,oo) gsp}. 6.1)

In this new context, L no longer fixed, and its choice might depend on p and €.
We recall that by Proposition 4.1 and the computations above, if np — A > 0, we have
-1 i L-1
p~ FNR(p,L;p,00) < L(np)~ .
As a result we are lead to choose n and L such that L(np)~“~! ~ ¢, while minimizing the efficiency of

the algorithm E = % ~ p(e/L)/(L=1) We thus obtain that the efficiency of the algorithm is optimal
when L is taken to minimize

L (/L)Y (=),

and n as (/L)Y (E=1) /p. Therefore, the optimum is attained by choosing np — A > 0.
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To precise the computations in that situation, we use the formula given in Proposition 4.1. We ob-
serve that as np — A, we have

FNR(p,L;p,00) = FNR(A, L;oo) = (1 + (L — 1)e ™ M)(1 — e ML,

Moreover, we have E(p)/p = an — L/\. As aresult, we have

E* R

lim & :min{%,L6N,/\>02FNR()\,L;OO) S»S}.
p=0 p

As ¢ — 0, the optimal is attained for \, L such that Llog(1 —e~*) =log(e)(1 + o(1)), yielding

. EX(p) —loge(1+0(1))
lim = .
p—0 P —Alog(1 —e=?)

This quantity is minimal for A = log 2.
As a consequence, as p — 0, we recommand using n = (log2)/p,and ase — 0 L =
an optimal efficiency behaving as

loge

—logZ,toobtam

p(—loge)

E:(p) S (10g2)2

as p — 0 then e — 0.
Note in particular that n is chosen depending on the value of p, while L is chosen as a function of € in
this asymptotic regime.

Remark 6.1.  As noted in Remark 2.4, Algorithm 1 could be adapted as a two-step algorithm in which
every inconclusive item is tested again individually. Note that the upper bound we use for the false neg-
ative rate is exactly the rate of inconclusive elements (as we bound F'N (x) by F'N(0)). In this two-step
algorithm, the efficiency would therefore be E(2)(p) = EX(p) + & < —plog(e)(log2) 2 + ¢, which
is minimal for € = (log 2)*2p. This two-step algorithm would thus have an efficiency asymptotically
bounded by (log2)~2plog(p) as p — 0.

Remark 6.2.  'We also observe that choosing € =7~ 1~ for some o > 0, the efficiency becomes
EX(p) ~2.08(1+ a)p(—logp) asp—0.

With this choice of ¢, the probability of observing one false negative in the grid decay to 0 as en?p ~
n~%. In that situation, we obtain an efficiency with a similar order of magnitude of the optimal results
of [19], with a simpler (non-random) construction of the algorithm. Actually, the efficiency obtained
here attains the lower bound of the optimal efficiency predicted in [21] for a two-steps binary pool
testing algorithm. Therefore, the non-adaptive Algorithm 1, making use of the load value of items,
archives the same efficiency as an optimal two-stage algorithm.

7. Comparison of the different algorithms

In this section, we illustrate the behavior of our proposed algorithm versus the two-steps Dorfman’s
algorithm and Mézard’s optimal algorithm. We describe the choices of the parameters in the following.

* The simulations took the set {3,5,7,11,13,17,19,23,29,31,37,41,43,47} of the odd prime
numbers under 50 as the possible values of n.
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* The algorithm is allowed to perform tests in up to Lyax = 14 directions. In the case when
n < 14, we obviously restrict the number of directions to Lyax =n — 1.

* The prevalence parameter p varies between 0.05 and 0.2 with a constant increment of 0.05.

* We made vary K inside the set {2,5, 10,30, 200,500} to illustrate its influence.

* For each choice of the parameters (n, L, p, K') above, we run 200 copies Algorithm 1.

Consequently, for each choice of the set of parameters, we observe 200 copies of the output of the
algorithm. Afterwards, the matrix of results is compared to the matrix of the true matrix containing the
information of the true positive and negative individuals. Thanks to that, we compute the mean number
(over the 200 copies) of false positive and false negative discovered by the algorithm. Thus, we end
with an estimation of the number of false negative F'N(n, L, p, K) and the number of false positive
FP(n,L,p,K). The next step is to compute the optimal value of the efficiency E as a function of
p. Then, for any couple (p, K) fixed, we did the following concrete inclusions of the conditions of
Section 5.

1. We fixed 7 = 0.01 and we discarded all the pairs n, L such that FP(n, L,p, K) > (1 — p)n.
2. For each value of € we considered, we discarded the pairs such that FN(n, L, p, K) > epn?.
3. Then, from all the remaining values of the pairs (n, L), we minimized the quotient E(p) = L/n.

This value F(p) as a function of p (for different values of K) is the one that we drew in the following
illustrations.

7.1. Comparing the Efficiency with well known algorithms

Comparing the different algorithms for K= 5 Comparing the different algorithms for K= 30

1.0
1.0

Dorfman
-~ Mézard, al.
- — Grid eps=0.02
— Grid eps=0.08
— Grid eps=0.20

Dorfman
-~ Mézard, al.
- — Grid eps=0.02
—— Grid eps=0.08
— Grid eps=0.20

0.8
0.8

0.6
0.6

E(p)
E(p)
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Figure 3. The effect of the value of K on the slope of E(p) for different values of &

Figure 3 shows for the two different values K = 5 and K = 30, the behavior of our Efficiency curve
versus Dorfman theoretical efficiency and a simulated Mézard, al. efficiency. We drew the resulting
points of F(p) in three different colors (blue,purple,black) that correspond to the choices of e given by
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(0.02,0.08,0.2). For each of these ensembles of points, we also drew a simple regression line. It has
to be seen that the dependence of E on p is clearly linear and that the slope of the line is dependent on
the choice of the parameter €, as expected. It is also interesting to see that the effect of ¢ is less clear
when K is small since the number of false positives is higher and then is more limitent than when K
is large.

7.2. Showing the choices of L and n

The next three plots (in Figure 4) show the choices of the parameter L during the optimization of E
for fixed values of p and K. As before we let € vary in between the different plots. Besides been a little
unstable in the choice of L along p, we observe that the optimal L remains bounded (hence is fairly
independent from the choice of p) and does change with a change of ¢ as suggested by the calculations
in Section 6.

The optimal choice of L for K= 30 and Eps= 0.05 The optimal choice of L for K= 30 and Eps= 0.01 The optimal choice of L for K= 30 and Eps= 0.001

E(p)
E(p)

0.00 005 010 015 020 000 005 010 015 020 000 005 010 015 020

Figure 4. Efficiency with respect to p and the associated optimal choice of the parameter L. The number displayed
inside the blue bubbles correspond to the chosen value of L in the optimization.

The last three plots (in Figure 5) are the analogs of the previous plots with the slight difference that
the displayed numbers correspond to the chosen values of n. In this case, we observe that, now, ¢ has
no more effect on the chosen values of n. As expected, n depends on p in a decreasing manner and
validate the calculation of Section 6. Indeed, we showed that the best choices of n allow to keep the
product np more or less constant which is the case in the simulations.

8. Application to the COVID-19 pandemic and open questions

The application of the present algorithm to PCR testing in the context of the COVID-19 pandemic
requires some adaptation and presents a couple of challenges. It should first be noted that the simpli-
fications we made in our modeling were quite important. We thus begin by discussing in more details
the discrepancies between the real-world problem and our idealized model.

Finite size of samples. In COVID-19 pool testing, the items that are tested are samples taken from
subjects, via nasal swab, saliva sample or other method. If there seems to be usually enough matter to
split the sample into several tests, it will not be possible to make an arbitrary large number of tests on
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‘The optimal choice of n for K= 30 and Eps= 0.05 The optimal choice of n for K= 30 and Eps= 0.01 The optimal choice of n for K= 30 and Eps= 0.001
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Figure 5. Efficiency with respect to p and the associated optimal choice of the parameter n. The number displayed
inside the blue bubbles correspond to the chosen value of n in the optimization.

each sample. Therefore, optimal computations made in Section 5 might be somewhat more relevant.
Additionally, it is worth noting that combining several samples have the effect of creating a composition
with the average viral load rather than the maximal, although the fact that this viral load is spread over
several orders of magnitudes negates partially this problem as discussed in the introduction.

Noisiness in the measure. We chose to represent a lack of accuracy of the measure by replacing the
continuously distributed viral load by a discrete distribution, as if contaminated tests could be arranged
into “classes” of similarly measured viral load. In practice, the quantity returned is a real number,
which is a measure on which a Gaussian noise is expected to be applied. More precisely, several steps
of the process have the effect of creating uncertainty on the measure, and the variance that has to be
expected from a pooled test might be rather large. There is first the collection of the portions of samples
used to make the group testing, whose volume and associated viral load may vary with regards to the
attended equal contributions. Next, the reverse transcriptase step that converts RNA samples of the
virus into DNA might introduce additional noise depending on its rate of conversion. Finally, the PCR
measurement itself products a noisy value, partially corrected by the fact that classically, two different
DNA sequences for the virus are measured separately. It would then require some adaptation of our
algorithm to adapt the “finite precision algorithm” to noisy Gaussian measure of the viral load in each
pool, although classical likelihood ratio estimates might be successfully used here.

Distribution of the viral load among contaminated. Concerning the distribution of the viral load
of the samples, we made here the choice of uniform distribution, which is the most favorable for this
type of algorithm. Although this is quite far from what is effectively observed [16, 6], the viral load
observed among large groups of people is usually successfully approached by a mixture of two to three
Gaussian variables with standard deviations between 3 and 6, spanning over the interval [20,40] (c.f.
[5, Appendix B]). The viral loads may be considered sufficiently spread over the interval so that the
algorithm discussed above might still be relevant. The nice and explicit calculations on the choices of
the parameters would need to be adapted. They might also need to be tuned from day to day, depending
of the expected prevalence of samples on a given day, which might vary over time.

Precision limits of the PCR. As it was first noted in [11], theoretical aspects of pool testing usually
assume that the quality of the test does not depend on the size of the pool. However, this is rarely the
case in real-world applications, and it is indeed not the case for the present application. In particular,
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we show in [5] that pooling has an impact on the measurement of samples with small viral loads. In
our toy model, this could be taken into account by specifying that in pools of size n, items with load
smaller than ¢y, are treated as non-defective items, for some increasing function c¢,,. This has the effect
of decreasing the value of the optimal choice for n, in order to detect enough contaminated individuals
with small viral load. However, the computations in this case being very dependent on the function c,,
we choose not to include it in the present work.

Random outcome of a pooled test. Finally, we assumed that each test of the pools is performed with
no other error than the one inherent to the PCR itself. It is probably an oversimplification in this case, as
pool testing implies important manipulations of the samples, with possible additional errors involved.
For example, forgetting to collect one individual in a pool, contaminating a pool with a sample that
should not belong to it, etc. Those human errors would create noise on the measures of the pools and
so would deteriorate the information given to our algorithm. Therefore, it would need to be adapted to
this situation, in order not to characterize as negative a sample measured at high values in all but one
pool, for example.

Potential extensions. The algorithm presented here has the advantage of being simple to implement
and easy to solve, even by hand. However, more precise algorithms might be employed with the help
of automation for the creation of samples and measure of results. It would therefore be interesting
to create more precise algorithms for PCR-type pool testing. A relevant generalization could be to
collect and use additional information on the subjects. We can imagine that, throughout interviews,
some individuals might be identified as being more likely to be contaminated, while others could be
simply routinely tested. It is probably more efficient to tests the former in smaller pools and the latter
in larger ones.

An other project of interest might be the deconvolution of pools created by Dorfman’s algorithm.
More precisely, in the algorithm, instead of testing individually every member of a group detected as
contaminated, it might be interesting to test several samples from different positive pools in a two-stage
deconvolution that might represent a further economy of tests on Dorfman’s algorithm. Choosing the
right pools to pair together, as well as the number of positive pools to be de-convoluted at the same
time might be an interesting expansion on the current work.
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