Estadística matemática Maestría 2021

Tarea n°2

Ejercicio 1 Un vector aleatorio X a valores en \mathbb{R}^d se llama *gaussiano* si cada combinación lineal de sus componentes sea de ley gaussiana. Denotamos T la transpuesta de matrices. Si $X = (X_1, \dots, X_d)^T$ es un vector gaussiano, se define :

$$m = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_d])^T$$
$$\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$

Definimos la función caracteristica ϕ_X de X por $\phi_X(t) = \mathbb{E}\left[e^{it^TX}\right]$.

1. Mostrar que $\phi_X(t) = \exp(it^T m - \frac{t^T \Sigma t}{2})$.

Entonces la ley de un vector gaussiano X es completamente determinado por m y Σ . Denotamos $\mathcal{N}(m, \Sigma)$ esta ley.

- 2. Justificar esa frase.
- 3. Sea $X \sim \mathcal{N}(m, \Sigma)$, A una matriz $d' \times d$ y b un vector de $\mathbb{R}^{d'}$. Mostrar que $AX + b \sim \mathcal{N}(Am + b, A\Sigma A^T)$
- 4. Sean $i, j \in \{1, ..., d\}$ con $i \neq j$, mostrar la equivalencia :

$$X_i \ y \ X_j \ \text{son independentes} \iff \text{Cov}(X_i, X_j) = 0$$

Como reconocemos que los componentes de X son independientes en la matriz Σ ?

Sea E un sub espacio lineal de \mathbb{R}^d . Denotamos Π_E la proyección orthogonal sobre E.

5. Sea $X \sim \mathcal{N}(m, I_d)$ y una descomposición $\mathbb{R}^d = E_1 \oplus \cdots \oplus E_r$ ensub espacios orthogonales. Mostrar que los vectores gaussianos $\Pi_{E_1} X, \ldots, \Pi_{E_r} X$ son independientes.

Ejercicio 2 Para una variable X tal que su función generatriz de momentos es finita, definimos $K_X(t) = \log M_X(t)$ y su desarollo en serie de Taylor

$$K_X(t) = \sum_{n=1}^{\infty} k_n(X) \frac{t^n}{n!}$$

- 1. Mostrar que si X y Y son dos variables independientes, entonces $k_n(X+Y) = k_n(X) + k_n(Y)$.
- 2. Expresar $k_1(X), k_2(X)$ y $k_3(X)$ en función de los momentos de orden 1,2 y 3 de X.

Ejercicio 3 Sean Z_1, Z_2, \ldots variables i.i.d. de densidad f. Supongamos que $\mathbb{P}(Z_i > 0) = 1$ y que $\lim_{x \to 0} f(x) = \lambda > 0$. Sea

$$X_n = n \min\{Z_1, \dots, Z_n\}.$$

Mostrar que $X_n \stackrel{(d)}{\to} X$ donde X tiene una distribución exponencial de parámetro que calcularemos.