Tarea n°1

Esa tarea está dividida en problemas independientes. Fecha limite de entrega: 09/03/2020

Problema 1 (Alrededor de funciones caracteristicas) Sea Z una variable uniforme sobre [-1,1].

- 1. Calcular la función caracteristica de Z.
- 2. Mostrar que no se puede encontrar variables i.i.d. X, Y tal que $X Y \sim Z$.

Sea $f: t \mapsto ae^{b(|t|+c)^2}$.

- 3. Mostrar que f es una función caracteristica por ciertas constantes a, b, c. Describir la distribución corespondiente.
- 4. Mostrar que $t \mapsto e^{-|t|^{\alpha}}$ por $\alpha > 2$ no puede ser una función carateristica.

Problema 2 (Condiciones de Lindeberg-Feller) Sean $X_i \sim U[-a_i, a_i]$ variables uniformes independientes con $\forall i, a_i < a < \infty$.

1. Mostrar que las condiciones de Lindeberg-Feller se cumplen por la sucesión $(X_i)_i$ si y solo si $\sum_i a_i^2 = \infty$

Sean $X_i \sim \text{Exp}(\lambda_i)$ y supongamos que $(\max_{1 \le i \le n} \lambda_i^2) / \sum_{i=1}^n \lambda_i^2 \to 0$.

2. Mostrar que bajo la buena standardización (de media y varianza), la suma $\sum_i X_i$ converge a $\mathcal{N}(0,1)$.

Problema 3 (Aplicación de Slutsky)

1. Sean X_n y Y_m variables aleatorias independientes de Poisson de parámetros n y m. Que distribución limite tiene $\frac{X_n - Y_m - (n-m)}{\sqrt{X_n + Y_m}}$ cuando $n, m \to \infty$?

Problema 4 (Uniforme integrabilidad) Supongamos dadas unas variables reales positivas X_1, \ldots, X_n i.i.d. Denotamos $X_{(1)}, \ldots, X_{(n)}$ las estadísticas de orden.

1. Mostrar que si $\mathbb{E}\left[X_1^k\right] < \infty$, se cumple

$$\mathbb{E}\left[X_{(r)}^k\right] \leq \frac{n!}{(r-1)!(n-r)!} \mathbb{E}\left[X_1^k\right].$$

2. Mostrar que si $\mathbb{E}\left[X_1^2\right] < \infty$, la sucesión $(n^{-1}X_{(n)})_n$ es uniformemente integrable.

Sea $(X_n)_n$ una sucesión de variables reales. Sea $f: \mathbb{R}_+ \to \mathbb{R}_+$ una función no decreciente tal que $\frac{f(x)}{x} \underset{n \to \infty}{\longrightarrow} +\infty$. Supongamos que $\mathbb{E}\left[\sup_n f(|X_n|)\right] < \infty$.

3. Mostrar que $(X_n)_n$ es una sucesión uniformemente integrable.