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Chapter 1

Preface

These notes, were essentially written during the �rst two years of my doctoral course at CIMAT, Mexico. As a student, I
had the chance to have access to very well designed courses notes from my professors at the ENS Cachan and Université
Paris Saclay which helped at lot in the learning process. This work is written in a way that it is as self-contained as I
possibly achieved to, to quickly familiarize students with the beautiful notions around empirical processes and Dudley
entropy theory.
These themes cannot be tackled without a quick tour by the classical convergence theorems in �nite dimension spaces -
where we speak about random vectors. This guided tour passes also rapidly through the simple 1D world as a excuse to
look deeper into the important de�nitions in probability theory.
As a pedagogic material, this notebook pretends - I am aware of the gluttony for real life illustration asked by my students
- to give enough instructive examples to get our hands on motivating application problems. [To continue]

Prerequisities: We assume known the following notions.

• Basic de�nitions of mathematical tools (sequences, integrals, limits, continuity, topology, limsup, liminf)

• σ-algebras, measurability, measures, probability measures, random variable, expected value, variance, independence,
distributions.

• Classical theorems of integration (Monotone convergence, Dominated convergence, Fatou's Lemma,...)

• Classical distributions (Bernoulli, Binomial, Poisson, Exponential, Normal)

1.1 Notations and de�nitions

Vector space of �nite dimension Let E be a vector space of �nite dimension. As real vector spaces of same dimension
are (linearly) equivalents, we will assume E “ Rk for some k P N �xed one and for all as it permits us to simplify our
notations.

Sets of functions We denote by CbpRkq the set of continuous and bounded functions f : Rk ÞÑ R. For a measure µ on
Rk and p ě 1, we denote by LppRk, µq the set of measurable functions f : Rk Ñ R such that

ş

|f |pdµ ă `8. If µ is the
Lebesgue measure on Rk, the set LppRk, µq will be simply denoted by LppRkq.

Notations oP and OP For a sequence of random vectors pZnqn and a sequence pknqn P pR`qN, we denote by

• Zn “ OP pknq if lim
TÑ`8

lim P p}Zn} ą Tknq “ 0,

• Zn “ oP pknq if for all ε ą 0, lim
nÑ`8

P p}Zn} ą εknq “ 0
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Part I

Probability
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Chapter 2

Convergence of random variables

The purpose of this chapter is to prepare the reader to enter in the �eld of empirical processes slowly by stating and
proving the famous theorems as Law of Large Numbers (LLN) or Central Limit Theorem (CLT) which have made the
popularity of Probability theory in the last century. A lot of this chapter is inspired by the excellent [19].

2.1 Modes of convergence

De�nition 1. A random vector is a random variable X : Ω ÞÑ Rk where we implicitly associated to Ω and Rk (with
k P N˚) their respective Borelian σ-algebra. A sequence of random vectors will be usually denoted by pXnqnPN P pRkqN.

De�nition 2. Let pXnqnPN P pRkqN be a sequence of random vectors and X a random vector in Rk. Their respective
probability measures are denoted by µn and µ. Let d be a distance on Rk and } ¨ } be the usual norm on Rk. We say that,

1. pXnqnPN converges in probability to X, denoted by Xn
P
ÝÑ X if @ε ą 0, P pdpXn, Xq ą εq ÝÑ

nÑ8
0.

2. pXnqnPN converges in distribution or weakly to X, denoted by Xn
pdq
ÝÑ X or Xn

pwq
ÝÑ X if @h P CbpRkq,

ş

hdµn ÝÑ
nÑ8

ş

hdµ.

3. pXnqnPN converges in almost surely to X, denoted by Xn
a.s.
ÝÑ X if DΓ Ă Ω,@ω P Γ, Xnpωq ÝÑ

nÑ8
Xpωq and Γc is

negligible.

4. pXnqnPN converges in Lp to X, denoted by Xn
Lp
ÝÑ X if

@n P N, E r}Xn}
ps ă `8 and E r}Xn ´X}

ps ÝÑ
nÑ8

0.

5. pXnqnPN converges in total variation to X, denoted Xn
TV
ÝÑ X, if supB |P pXn P Bq ´ P pX P Bq | ÝÑ

nÑ8
0, where

the supremum is taken over the set of Borelian measurable sets B.

Remarks

• In 2., it is not required to have the random variables Xn and X to live in the same probability space whereas the
other four type of convergence do require this fact.

• In 4., the triangular inequality implies E r}X}ps ă `8.

• In the convergence in probability, since we are dealing with Rk (a vector space of �nite dimension), all the distances
are equivalent. This is to say, for any two distances d and d1 on Rk, there exists c, C ą 0 such that, for every
x, y P Rk

cd1px, yq ď dpx, yq ď Cd1px, yq.

It implies that the notion of probability convergence that we consider is not dependent on the chosen distance. When
not speci�ed di�erently, we will always consider the euclidean distance.

The following Lemma simpli�es the task of proving weak convergence and will be a key tool for the upcoming results.

Lemma 1 (Portmanteau). Let pXnqnPN and X be random vectors. The following properties are equivalent:

11
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i) Xn
pdq
ÝÑ X

ii) @f function Lipschitz and bounded, E rfpXnqs ÝÑ
nÑ8

E rfpXqs.

iii) @F closed set, lim supP pXn P F q ď P pX P F q.

iv) @G open set, lim inf P pXn P Gq ě P pX P Gq.

v) @A Borelian s.t. P pX P BAq “ 0, P pXn P Aq ÝÑ
nÑ8

P pX P Aq.

Proof. i) ùñ ii) is obvious since Lipschitz bounded functions are in particular continuous and bounded.
ii) ùñ iv) Let fkpxq “ minpkdpx,Gcq, 1q. This function is Lipschitz by the Lipschitzness of the distance. It is obviously
bounded. Moreover, for every x, fkpxq converges increasingly to 1Gpxq. Hence,

lim inf
n

P pXn P Gq ě lim inf
n

E rfkpXnqs
by ii)
“ E rfkpXqs ÝÑ

kÑ8
P pX P Gq

where the last fact holds by monotone convergence.
iii)ô iv) is obvious by completion.

iii) + iv) ùñ v) Take any Borelian set such that P pX P BAq “ 0. Then, using iii) for the closed A and iv) for Å, we get

lim supP pXn P Aq ď lim supP
`

Xn P A
˘

ď P
`

X P A
˘

.

ď “

lim infP pXn P Aq ě lim inf P
´

Xn P Å
¯

ě P
´

X P Å
¯

.

This chain of inequalities �nally imply that

P pXn P Aq ÝÑ
nÑ8

P pX P Aq .

v) ùñ iii) Let F be a closed set of Rk and de�ne for any β ą 0,

Fβ “ tx : dpx, F q ď βu.

The elements of the familly pBFβqβą0 are disjoint. Then
ÿ

βą0

P pX P BFβq ď P
`

X P Rk
˘

“ 1.

The previous convergence has to be understood as the sumable (see De�nition 18 and Proposition 31) then the sum has
only �nite number of non zero terms:

tβ ą 0 : P pX P BFβ ‰ 0q is a countable set.

From that we can de�ne a sequence pβkqk such that βk Ñ 0 and such that

@k P N, P pX P BFβkq “ 0.

Then
lim sup
nÑ`8

P pXn P F q ď lim sup
nÑ`8

P pXn P Fβkq “ lim
nÑ`8

P pXn P Fβkq “
by v)

P pX P Fβkq .

We �nish by taking the in�mum in k.
iii) ùñ i) Let 0 ă f ă 1 be a continuous function. Using the classical (15.4) and Fatou Lemma, we get

lim supE rfpXnqs ď

ż 1

0

lim supP pfpXnq ě xq dx

ď
by iii)

ż 1

0

P pfpXq ě xq dx “ E rfpXqs .

We used that the set tfpXnq ě xu “ tXn P f
´1prx,`8qu where the set f´1prx,`8q is the inverse of a closed set and is

then closed by continuity of f . Applying the same ideas for 1´ f gives the convergence

E rfpXnqs ÝÑ
nÑ8

E rfpXqs .

Then the general case follows from this by using the transform g :“ f´a
b´a for a ă f ă b.
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Many of the convergences of interest are robust under a continuous transformation. Precisely, we have the

Theorem 1 (Continuous transformation). Let g : Rk Ñ Rm be a continuous function. Then,

• If Xn
pdq
ÝÑ X, then gpXnq

pdq
ÝÑ gpXq.

• If Xn
P
ÝÑ X, then gpXnq

P
ÝÑ gpXq.

• If Xn
a.s.
ÝÑ X, then gpXnq

a.s.
ÝÑ gpXq.

One could be interested in a result where g is only assumed to be continuous except on a speci�c set of points. The results
are still true in this context if one assumes that this set of problematic points is not seen by the random variable X.

Proof. We prove in order:

• Let F be a closed set in Rm. Then,

lim supP pgpXnq P F q “ lim supP
`

Xn P g
´1pF q

˘

ď P
`

X P g´1pF q
˘

“ P pgpXq P F q .

which implies the weak convergence.

• Let ε ą 0 and δ ą 0. We can decompose

P pdpgpXnq, gpXqq ą εq ď P pdpgpXnq, gpXqq ą ε and dpXn, Xq ď δq ÝÑ
δÑ0

0

`P pdpXn, Xq ą δq
looooooooomooooooooon

ÝÑ
nÑ8

0, @δą0

This proves the convergence in probability.

• The almost sure convergence is obvious since it occurs on the same measurable set of probability 1.

2.1.1 Uniform integrability

De�nition 3. We say that a family C of random variables are uniformly integrable at order p (denoted U.I.) if
@ε ą 0, DK P r0;`8q such that

E
“

}X}p1}X}ąK
‰

ď ε,@X P C.

When p “ 1 we omit to say �of order 1�.

A U.I. family is bounded in Lp Take ε “ 1 and we denote by K the constant de�ned in De�nition 3. Then, for any
element X P C, we have that

E r}X}ps ď E
“

}X}p1}X}pąK
‰

` E
“

}X}p1}X}pďK
‰

ď 1`K.

Then a family that is uniformly integrable is, in particular, bounded in Lp. Besides the following example allows us to see
that the converse is not true.

Exercice 1. Let Xn “ n1r0,n´1q. Show that E rXns “ 1 and that pXnqn is not U.I.

Su�cient conditions for U.I. There is two very simple su�cient conditions for uniform integrability that we state
now.

Proposition 1. If either

• The family C is bounded in Lp1 for p1 ą p

• The family C is bounded by a random variable Y P Lp

then C is uniformly integrable of order p.

Theorem 2 (Implication of convergences). We have the following implications for Xn and X random vectors in Rd.
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(d)

P

a.s. Lp

the limit
is constant

Dominated convergence

Dnk a sub-
sequence

Uniform
Integrability

The doubled arrows hold for direct consequences whereas the simple arrows hold with an extra assumption or in a weaker
version has speci�ed by the text aside. More speci�cally, we have the following results.

1. Assume that Xn
a.s.
ÝÑ X and that there exists a random vector Y such that }Xn} ď }Y } for any n then Xn

Lp
ÝÑ X.

2. Assume that Xn
P
ÝÑ X then there exists a sub-sequence pnkqk such that Xnk

a.s.
ÝÑ X.

3. Assume that Xn
P
ÝÑ X and that the familly pXnqn is uniformly integrable at order p then Xn

Lp
ÝÑ X.

4. Assume that Xn
pdq
ÝÑ c where c is deterministic, then Xn

P
ÝÑ c.

Proof. a.s. ùñ P: We assume that Xn
a.s.
ÝÑ X.

0 “ P pD a sub-sequence nk s.t. @k, |Xnk ´X| ą εq

“ P plim sup t|Xn ´X| ą εuq (seen as events)

ě lim sup P p|Xn ´X| ą εq (Fatou for events)

and then P p|Xn ´X| ą εq Ñ 0 for any ε ą 0.
P ùñ (d): Let f be a λ-Lipschitz function bounded by a constant K, then

|E rfpXnqs ´ E rfpXqs | ď E
“

|fpXnq ´ fpXq|1|Xn´X|ďε
‰

` 2KP p|Xn ´X| ą εq

ď λε` 2KP p|Xn ´X| ą εq

The convergence in probability allows us to choose n large enough to get P p|Xn ´X| ą εq ď ε. Then |E rfpXnqs ´

E rfpXqs | ď pλ`2Kqε which shows that E rfpXnqs Ñ E rfpXqs. We conclude using Lemma 1 to get the weak convergence.
Lp ùñ P: By the Markov's inequality,

P p}Xn ´X} ą εq ď
E r}Xn ´X}

ps

εp
ÝÑ
nÑ8

0

1. a.s. Ñ Lp is the direct consequence of the dominated convergence theorem. Indeed, by the bounded condition, X is in

Lp and }X} ď }Y }. Then we get
}Xn ´X} ď }Y } ` }X} ď 2}Y }

which is in Lp. Using, the dominated convergence theorem for the sequence p}Xn ´X}
pqn �nally gives the result.

2. PÑ a.s. This fact results from an interesting result in itself that we postpone to Lemma 45.
3. PÑ Lp For simplicity, we show the result for p “ 1 and Xn P R since the generalization to any p and Xn P Rk is

straightforward. Let φK : RÑ r´K,Ks such that

φK :“

$

&

%

K if x ą K
x if |x| ď K
´K if x ă ´K

.

Let ε ą 0. Since the family pXnqn is U.I., there exists K ą 0 such that

E r|φKpXnq ´Xn|s ă
ε

3
@n ě 0,

and
E r|φKpXq ´X|s ă

ε

3
.
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By construction φk is 1-Lipschitz i.e. @x, y, |φKpxq ´ φKpyq| ď |x´ y| then by the continuous transformation

φKpXnq
P
ÝÑ φKpXq.

We can use the dominated convergence theorem (see Lemma 35) since φKpXnq and φKpXq are bounded (and then
integrable) to see that there exists n0 such that @n ě n0,

E r|φKpXnq ´ φKpXq|s ă
ε

3
.

Summing up, we get

E r|Xn ´X|s ď E r|Xn ´ φKpXnq|s ` E r|φKpXnq ´ φKpXq|s ` E r|φKpXq ´X|s ă ε.

Then Xn
Lp
ÝÑ X.

4. (d) Ñ P Let Bpc, εq be the open ball of radius ε centered at c. Then P pdpXn, cq ě εq “ P pXn P Bpc, εq
cq, but

lim supP pXn P Bpc, εq
cq ď P pc P Bpc, εqcq “ 0,

by the lemma Portmanteau. Hence, P pdpXn, cq ě εq Ñ 0 and Xn
P
ÝÑ c.

Two exercises about probability convergence

Exercice 2. De�ne the sequence of random variables on the probability triplet pp0, 1s,Bpp0, 1sq,Lebq,

Y1 “ 1p0,1s

Y2 “ 1p0,1{2s, Y3 “ 1p1{2,1s

Y4 “ 1p0,1{4s, Y5 “ 1p1{4,1{2s, Y6 “ 1p1{2,3{4s, Y7 “ 1p3{4,1s

¨ ¨ ¨

Show that this sequence is such that Yn
P
ÝÑ 0 but has no almost sure limit. We list its basic properties in the following

proposition.

Exercice 3. Let Xn be a sequence of random variables that converges in probability towards a random variable X. Assume
that @n P N, Xn ď Xn`1. Show that Xn

a.s.
ÝÑ X. Hint: Use 2. of Theorem 2.

Comments In fact the convergence Lp implies a little more than the convergence in probability. It also implies the
uniform integrability as pledged in Exercice 4.

Exercice 4 (Lp ùñ U.I.). Assume that Xn
Lp
ÝÑ X. We show in that exercise that pXnqn is uniformly integrable of order

p.

1. Let ε ą 0. Show that there exists N P N such that @n ě N , E r}Xn ´X}
ps ď ε{2p.

2. Apply Proposition 32 to show that we can choose δ ą 0 such that for any E P B such that P pEq ă δ, we have

E r}Xn}
p
1Es ď ε{2p´1, @n ď N and E r}X}p1Es ď ε{2p

3. Taking K such that K´1 supn E r}Xn}
ps ď δ, show that pXnqn is U.I. using that,

E r}Xn}
p1}Xn} ą Ks ď 2p´1E

“

}X}1}Xn}ąK
‰

` 2p´1E r}Xn ´X}
ps ,

(We may use Lemma 29) for n ą N and question 2. for n ď N .

2.1.2 Simultaneous convergence

In this section, we deal with the simultaneous convergence of two random variables Xn and Yn when it is known that
they marginally converge to two random variables X and Y . Combining their convergence is not that direct, especially
for weak convergence. In the following, the famous Slutsky Lemma is also presented as an optimal result in this direction.
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Convergence almost sure Almost nothing is needed to say here. Indeed, considering the intersection of the two
measurable sets on which Xnpωq Ñ Xpωq and Ynpωq Ñ Y pωq results another set of probability one where simultaneously
the two convergences occur. Simultaneous convergence being equivalent to convergence for the sequence of couples in
product spaces gives the result. We keep that in mind under the short,

Xn
a.s.
ÝÑ X and Yn

a.s.
ÝÑ Y ô pXn, Ynq

a.s.
ÝÑ pX,Y q

Convergence in probability By the fact that for x1, y1, x2, y2, we have (for the euclidean distance)

dppx1, y1q, px2, y2qq ď dpx1, x2q ` dpy1, y2q,

and for example,

dpx1, x2q ď dppx1, y1q, px2, y2qq

then, the probability convergence transmits directly in product spaces. More precisely,

Xn
P
ÝÑ X and Yn

P
ÝÑ Y ô pXn, Ynq

P
ÝÑ pX,Y q

Slutsky Lemma

Proposition 2. Let pXnqn and pYnqn be two sequences of random vectors. Assume that Xn
pdq
ÝÑ X and dpXn, Ynq

P
ÝÑ 0,

then Yn
pdq
ÝÑ X.

Proof. Let f be a 1-Lipschitz function taking values in r0, 1s. Note that imposing f to take values in r0, 1s is not restrictive
since one can always renormalize and translate a bounded function. Then,

|E rfpXnqs ´ E rfpYnqs | ď E
“

dpXn, Ynq1dpXn,Ynqďε
‰

` 2P pdpXn, Ynq ą εq

ď ε` 2P pdpXn, Ynq ą εq
loooooooooomoooooooooon

ÝÑ
nÑ8

0

.

Then, E rfpXnqs ÝÑ
nÑ8

E rfpXqs and the weak convergence is proved.

The so-called Slutsky Lemma is very useful in many areas of statistics as a powerful tool to combine the convergence of
two or more sequence of random variables to �nally get the weak convergence of a possibly complex expression.

Lemma 2 (Slutsky). Assume that Xn
pdq
ÝÑ X and Yn

P
ÝÑ c where c is a constant of Rk. Then, pXn, Ynq

pdq
ÝÑ pX, cq and

in particular we have

• Xn ` Yn
pdq
ÝÑ X ` c.

• YnXn
pdq
ÝÑ cX.

• Y ´1
n Xn

pdq
ÝÑ c´1X when c ‰ 0.

Proof. We use the previous proposition with pXn, cq
pdq
ÝÑ pX, cq and dppXn, cq, pXn, Ynqq ď dpYn, cq ÝÑ

nÑ8
0 where we used

indistinctly d for the distance in Rk and R2k.

Exercice 5. Prove that Xn
pdq
ÝÑ X and Yn

P
ÝÑ Y is not su�cient (in general) to have pXn, Ynq

pdq
ÝÑ pX,Y q. (Hint:

Consider Xn “ Yn “ Y and X „ Y drawn independently.)

The particular case follows from the continuous transformation of the weak convergence.

Example of application of Slutsky Lemma If one takes X1, . . . , Xn a collection of i.i.d. random vectors such that
E rX1s “ 0 and E

“

X2
1

‰

ă `8. One can compute the two classical estimators,

Xn “
1

n

n
ÿ

i“1

Xi and S2
n “

1

n´ 1

n
ÿ

i“1

pXi ´Xnq
2.
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By the weak law of large numbers, Xn
P
ÝÑ 0 and

S2
n “

n

n´ 1

˜

1

n

n
ÿ

i“1

X2
i ´X

2

n

¸

P
ÝÑ E

“

X2
1

‰

´ pE rX1sq
2 “ Var pX1q

where we used Theorem 1 for the function gpx, yq “ x ´ y2. The central limit theorem also gives that
?
n Xn

pdq
ÝÑ

N p0,Var pX1qq which, combined with Slutsky's Lemma, implies

?
n
Xn

S2
n

pdq
ÝÑ N p0, 1q.

This last property allows to design con�dence intervals for the mean E rX1s of a sample of unknown common variance.

2.2 Exercices

Exercice 6. Let pXnqně0 a sequence of real random variables.

1. Show that the convergence in distribution of pXnqně1 is NOT equivalent to � For any continuous function of compact
support f , the sequence pEpfpXnqqqně1 converge.�

2. Show that the convergence in distribution of pXnqně1 is equivalent to �For any continuous function of compact support
f , the sequence EpfpXnqq ÝÝÝÑ

nÑ8
EpfpX0qq.�

3. We assume that Xn
L1

ÝÝÝÑ
nÑ8

X0.

(a) Show that for any �xed ε ą 0, there exists δ ą 0 such that Ep}Xn}1XnPF q ă ε for all n ě 0 and any F P BpRq
such that PpF q ď δ.

(b) Deduce that if Xn
L1

ÝÝÝÑ
nÑ8

X0, then Xn
P

ÝÝÝÑ
nÑ8

X0 y pXnqně0 is uniformly integrable.

Exercice 7. Let pXnqně1 be a sequence of random variables.

1. Assume that pXnqně1 converges in distribution to a standard gaussian random variable N . Is there convergence of
Ep|Xn|

pq towards Ep|N |pq for any p ě 1?

2. Show the converse: If the sequence Ep|Xn|
pq converges to Ep|N |pq for all p ě 1, then pXnqně1 converges in distribu-

tion to the standard gaussian variable N .

Exercice 8. Let pXnqně1 be a sequence of real random variables with support included in Z.

1. We assume that pXnqně1 converges in distribution towards X. What is the support of X? Show that for any x P Z,

PpXn “ xq ÝÝÝÑ
nÑ8

PpX “ xq.

2. Assume that X is a real random variable and that for all x P Z,

PpXn “ xq ÝÝÝÑ
nÑ8

PpX “ xq.

What should verify X so that Xn converges to X ?

Exercice 9. Let pXnqně1 be a sequence of binomial random variables of parameters pn, 1{nq. Let pYnqně1 be a sequence of
random variables such that for any x ď

?
n, conditionally to Xn “ x, we have that Yn “ x and otherwise, conditionally to

Xn “ x, we have that Yn is a binomial random variable of parameters px!, 1
π q. Show that pYnqně0 converges in distribution

and describe the limit.

Exercice 10. Let X be a random variable of support included in Z and with distribution

PpX “ nq “
C

2n2 log |n|
,

for all n P Z˚.
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1. Show that X has no moment of order 1.

2. Calculate the characteristic function φX of X.

3. Show that φX is di�erentiable on R.

Exercice 11. Let Z be a random variable with uniform distribution on r´1, 1s.

1. Compute the characteristic function of Z.

2. Show that there is no i.i.d. random variables X,Y such that X ´ Y „ Z.



Chapter 3

Distribution function

For a random vector X “ pX1, . . . , Xkq, the function FX : Rk Ñ r0, 1s and given by

FXpx1, . . . , xkq “ P pX1 ď x1, . . . , Xk ď xkq

is called the distribution function of the random vector X. In the real case, it is obvious to see that the distribution
function is no-decreasing. The vectorial case is a little di�erent in the notion of monotonicity of FX . We say that a
function f is 2-increasing if for any two coordinate i and j in t1, . . . , ku, we have @x ď y and @u ď v,

∆piqx,y∆pjqu,vf ě 0,

where ∆
piq
a,b “ pf

piqp¨, bq ´ f piqp¨, aqq{pb´ aq and f piqp¨, xq holds for the function

px1, . . . , xi´1, xi`1, . . . , xkq ÞÑ fpx1, . . . , xi´1, x, xi`1, . . . , xkq.

Proposition 3. We have the following. For two vectors x, y of Rk, we denote by x ď y if each coordinate of x is smaller
than each coordinate of y.

a) FX is a 2-increasing function.

b) Denoting by x Ñ `8k the fact that each coordinate of x tend to `8 and by x Ñ ´8Yk the fact that at least one
of the coordinates converges to ´8, we have that

lim
xÑ`8k

FXpxq “ 1 and lim
xÑ´8Yk

FXpxq “ 0.

c) FX is right-continuous.

Proof. Obvious.

Remark 1. The notion of right continuity is to be understood in its weak version. It is formally de�ned as

`For any sequence pxnqn P pRkqN decreasing (coordinate by coordinate) to x, FXpxnq ÝÑ
nÑ`8

FXpxq'

A natural question is to ask whether or not those are the maximal properties that a distribution function have in full
generality. We can answer by the a�rmative thanks to the following section.

3.1 Existence of random variables of given distribution function

In this section, we will use the important Carathéodory extension theorem. See Theorem 34

Proposition 4. Let F : Rk Ñ r0, 1s which satis�es a),b) and c) of Proposition 3 then there exists a random vector X P Rk
such that FX “ F .

Proof. We treat the case k “ 2 since the general case is a direct generalization of this case. Assume given the function
F : R2 Ñ r0, 1s and let Σ0 be the algebra (in the sense of De�nition 17.1.1) of all the sets which are Cartesian product of
sets of the form

pa, bs, p´8, bs, pa,`8q, R, H where a, b P R.

19
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One can directly construct a countably additive map µ0 : Σ0 Ñ r0, 1s corresponding to the natural meaning of a distribution
function. For example for the set A “ pa, bs ˆ pc, ds (where a ď b and c ď d with a, b, c, d P R “ R Y t´8,`8u)
corresponding to a event of the form

ta ă X1 ď b & c ă X2 ď du,

one would associate the value µ0pAq :“ F pb, cq ´ F pb, cq ´ pF pa, dq ´ F pa, cqq. The �rst property of Proposition 3
implies that µ0pAq is always a positive quantity. Also note that, in order to be consistent, we need the conditions
F p´8, ¨q “ F p¨,´8q “ 0 that are given by the second point of Proposition 3. The countably additive property of µ0

follows easily from the right-continuous property of F . Hence Carathéodory theorem allows us to extend µ0 to the σ-algebra
generated by Σ0 which is the Borelian sets. Hence, one have constructed a measure on R2 (and hence a corresponding
random variable X) such that µX has distribution function F .

In the following result, we state and prove a Lemma that is at the basis of the characterization of the convergence in
distribution by the distribution functions.

Lemma 3 (Helly). Let pFnqn be a sequence of distribution functions on Rk. Then, there exists a non decreasing right-
continuous function F such that 0 ď F ď 1 and a sub-sequence pniqi such that

lim
iÑ8

Fnipxq “ F pxq for each point x of continuity of F.

Be careful Lemma 3 is not su�cient to ensure that the resulting object F is a distribution function. Indeed, it is
completely possible to be facing a case where

lim
xÑ´8k

F pxq ‰ 0 or lim
xÑ8k

F pxq ‰ 1.

This comes from the fact that PpRkq is not compact in general. One can see that by considering the sequence pµnqn such
that µn “ δpn,...,nq which has no sub-sequence that converges to a probability measure. Besides, the interested reader may

be pleased to know that Riesz representation theorem makes of PpRkq (embedded with the weak topology) a compact
metric space.

The following de�nition makes clear the suitable assumption to make to avoid dealing with the non-closed case of Helly's
lemma.

De�nition 4 (tension of measures). A sequence pµnqn in PpRkq is said to be tight if

@ε ą 0, DK ą 0 s.t. for all n, µnpr´K,Ks
kq ě 1´ ε

Note that for the measures of a sequence of random vectors pXnqn, the previous de�nition is equivalent to

lim
xÑ`8

sup
n

P p}Xn} ě xq “ 0.

Exercice 12. Show that the last assertion is true.

We have the �nal

Lemma 4. Let pFnqn be a sequence of distribution functions on Rk such that

lim
nÑ8

Fnpxq “ F pxq for each point x of continuity of F.

Assume furthermore that pFnqn is tight. Then, F is a distribution function on Rk.

Proof. Since for all n, FnpKq ě µnpr´K,Ks
kq ě 1´ ε, it holds that

lim
xÑ`8k

F pxq “ 1

For any x “ px1, . . . , xkq P Rk, Fnp´K ´ 1, x2, . . . , xkq “ µnpp´8,´K ´ 1s ˆ p´8, x2s ˆ ¨ ¨ ¨ ˆ p´8, xksq. But since the
two sets p´8,´K ´ 1s ˆ p´8, x2s ˆ ¨ ¨ ¨ ˆ p´8, xks and r´K,Ks

k are disjoints, we have

µnpp´8,´K ´ 1s ˆ p´8, x2s ˆ ¨ ¨ ¨ ˆ p´8, xksq ď 1´ µnpr´K,Ks
kq ď ε,

and then
lim

xÑ´8Yk
FXpxq “ 0.
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The counter example fails to verify the tension condition as state in the following exercise.

Exercice 13. Show that µn “ δpn,...,nq is not tight.

Proof of Helly's Lemma. We have the inclusion of the countable set Qk Ă Rk. Let q1, q2, . . . be a enumeration of the
elements of Qk. The sequence pFnpq1qqn is a bounded sequence of (in r0, 1s) reals. Then, by compactness, one can
extract a sub-sequence such that Fnp1,jqpq1q ÝÑ Hpq1q where the notations np1, jq and Hpq1q hold respectively for the
extractor sequence and for the limit. Now, the sequence pFnp1,jqpq2qqj is also a sequence in r0, 1s and another extraction
np2, jq Ă np1, jq gives that Fnp2,jqpq2q ÝÑ Hpq2q. Hence one can construct a sequence of extraction such that

@i, Fnpi,jqpqiq ÝÑ
jÑ8

Hpqiq.

We �nally have that @q P Qk, Hpqq “ lim
iÑ`8

Fnpi,iqpqq. It is obvious to see that 0 ď H ď 1 and that H is a 2-increasing

function on Qk. We de�ne, @x P Rk, F pxq :“ H
qÓx
pqq it always exists since it is the limit of a decreasing sequence. It

may not be clear that the function F is well de�ned. Let pqnqn and pq1nqn be two sequences such that qn Ó x and q1n Ó x
and let F pxq be the limit de�ned by pqnqn and F 1pxq be the limit de�ned by pq1nqn. By the fact that qn Ñ x, one can
extract a sub-sequence qni such that @i, qni ď q1i. Now, taking the limit in i, of Hpqniq ď Hpq1iq gives F pxq ď F 1pxq. But
symmetrically, F 1pxq ď F pxq and the function F is well-de�ned. By construction, we have that F is right-continuous and,

Fnpi,iqpxq ÝÑ F pxq for every point of continuity of F.

When the limiting function F is continuous, we have a stronger result.

Proposition 5 (Glivenko-Cantelli). Let pXnqn be a sequence of random variables in R of distribution function pFnqn.

Assume that Xn
pdq
ÝÑ X where we denote by F the distribution function of X. Assume that F is continuous on R, then

sup
xPR

|Fnpxq ´ F pxq| ÝÑ
nÑ8

0.

Proof. Letm P N˚ and let ´8 “ x0 ă x1 ă ¨ ¨ ¨ ă xm “ `8 such that F pxiq “ i{m. This is possible since F is continuous.
(The xi may not be unique.) Then, for any x P rxi´1, xis,

Fnpxq ´ F pxq ď Fnpxiq ´ F pxi´1q “ Fnpxiq ´ F pxiq `
1

m
.

In the same way, we have that Fnpxq ´ F pxq ě Fnpxi´1q ´ F pxi´1q ´
1
m . From those two facts, we have that

sup
xPR

|Fnpxq ´ F pxq| ď sup
0ďiďm

|Fnpxiq ´ F pxiq| `
1

m
.

Now, let ε ą 0 and �x m ď 2{ε such that 1{m ď ε{2. Remark that the supremum is taken over a �nite family of random
variables so the classical law of large numbers (Proposition 10) can be applied m` 1 times to get that for n large enough,

sup
0ďiďm

|Fnpxiq ´ F pxiq| ď
ε

2
.

This concludes the proof.



22 CHAPTER 3. DISTRIBUTION FUNCTION



Chapter 4

Levy theorem

Levy's theorem is one of the building blocks of the study of characteristic functions. It characterizes the convergence in
law of random variables through the convergence of their Fourier transforms. It is one of the simplest way to prove the
CLT for random vectors. Before going through the theorem itself, one need to develop a few tools in the area of functional
analysis and Fourier transform in Lp.

4.1 Characteristic function

For a random variable X of measure µ, the function de�ned for any t P Rk,

φXptq “ E rexppit ¨Xqs

is called characteristic function. This notion is deeply linked with functional analysis. Indeed, the Fourier transform
of a measure is de�ned as

Fµpξq “
ż

Rk
expp´ix ¨ ξqdµpxq.

so that we have φXptq “ Fµp´tq. From this fact, all the properties that are possible to show on the Fourier transform
can be settled for characteristics functions and vice versa. Some authors like to presents ad hoc proofs on characteristic
functions. We choose to write things in a way that it is close in notation and spirits to the functional analysis literature.

4.1.1 Basic properties of the characteristic function

Proposition 6. Let X be a random vector and let φX be its characteristic function. We have the following facts.

1. φXp0q “ 1.

2. For all t P Rk, |φXptq| ď 1.

3. On Rk, the function t ÞÑ φXptq is continuous.

4. For any a P R and b P Rk, φaX`bptq “ eib¨tφXpatq.

5. If for n P N, E r}X}ns ă 8, we have

B
pnq
j φXptq “ E

“

piXjq
neit¨X

‰

and B
pnq
j φXp0q “ inE rpXjq

ns

Proof. All the statement are simple use of classical results in integration as dominated convergence theorems.

It is important to know that most of the classical distribution have explicit formulas for the characteristic function.

Example 1. The caracteristic function of N pµ, σ2q is

@t P R, φµ,σ2ptq “ exp

ˆ

itµ´
σ2t2

2

˙

.

23
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Proof. A random variable X „ N
`

µ, σ2
˘

can be written X “ µ` σZ where Z „ N p0, 1q. So, φµ,σ2ptq “ eitµφpσtq where

φ is the characteristic function of Z. It is su�cient to prove φptq “ e´t
2
{2. Since the density function f0,1 of N p0, 1q is

symmetric, we have that @t P R, φptq “ φp´tq hence,

φptq “
φptq ` φp´tq

2
“

ż

R

eitz ` e´itz

2
f0,1pzqdz “

ż

R
cosptzq

1
?

2π
e´

z2

2 dz

and then φptq is real. By the theorem of derivation under the integral and integration by parts,

φ1ptq “

ż

R
sinptzq

´z
?

2π
e´

z2

2 dz “ ´

ż

R
t cosptzq

1
?

2π
e´

z2

2 dz “ ´tφptq.

This simple linear equation takes as solutions the functions φptq “ e´t
2
{2 `C, but φp0q “ 1 then C “ 0. Finally, the only

possibility is φptq “ e´t
2
{2.

4.2 Fourier analysis

4.2.1 Convolution of measures

For µ probability measure (see [11] for more general measures) and f a function integrable with respect to µ, we de�ne
the convolution of a function by a measure f ‹ µ by

f ‹ µ : x ÞÑ

ż

Rk
fpx´ yqdµpyq.

Also, the convolution between two measures µ and ν is given by

@A measurable, µ ‹ νpAq “

ż

RkˆRk
1x`yPAdµpxqdνpyq

where A and B are the respective σ-algebras of µ and ν. It will be checked in the appendix that µ‹ν is indeed a probability
measure on Rk in Fact 1. It is shown in appendix the habitual:

Proposition 7. The Fourier transform satis�es the following basic properties. For µ and ν two probability measures,

• }Fµ}8 ď 1.

• Fpµ ‹ νq “ pFµq ˆ pFνq.

The convolution of measures is very convenient to compute the distribution of sums of independent random variables.

Proposition 8. Let X „ µ and Y „ ν be two independent random variables and let Z “ X ` Y . Then

i) Z has the probability law given by µ ‹ ν.

ii) If X has a continuous bounded density f , then Z has a continuous density given by f ‹ ν.

The second fact can be useful when one wants to smooth some distribution Y by a small X in order to get a random
variable Z that has a density.

Proof. Point iq can be seen on all borelians of the form p´8, as, for example. Point iiq can be seen using that @h lipschitz,

E rhpZqs “ E rhpX ` Y qs “
ĳ

hpx` yqfpxqdxdνpyq “

ż

hpzq

ˆ
ż

fpz ´ yqdνpyq

˙

dz.
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4.2.2 Inversion formula

Parseval Identity Let X and Y be two random variables taking values in Rk of respective measures µ and ν. Finally,
we denote by φµ the characteristic function of X and by φν the characteristic function of Y . We get that, for any t P Rk

expp´iξ ¨ tqφµpξq “

ż

Rk
exppiξ ¨ px´ tqqdµpxq.

Under the condition that φµ P L1pRk, νq (integrable with respect to ν), integrating both sides with respect to ν and using
Fubini's theorem give that

ż

Rk
expp´iξ ¨ tqφµpξqdνpξq “

ż

Rk
φνpx´ tqdµpxq. (4.1)

This equation is called Parseval inequality. It has to be understood as a continuous version of the Perseval inequality
for periodic functions. As for Fourier series, it is a inversion formula that permits to link the norms of the transform of a
function (here the characteristic function) and of the function itself.

Special case When one specify the previous identity where one takes ν to be a normal probability measure, centered
and of variance σ´2I, the previous identity takes the form

σk

p2πqk{2

ż

Rk
expp´iξ ¨ tqφµpξq expp´

1

2
σ2ξ2qdξ “

ż

Rk
exp

ˆ

´
px´ tq2

2σ2

˙

dµpxq

where the square of a vector has to be understood as the square of its norm.

Inversion Formula We are now ready to give the complete proof of the inversion formula.

Theorem 3. Let µ be a borelian measure of probability on Rk let X be a random variable of measure µ. Denote by φµ its
characteristic function. Then φµ P L1pRkq if and only if µ admits a continuous and bounded density f (on Rk) given by

fpxq “
1

p2πqk

ż

Rk
exppix ¨ ξqφµp´ξqdξ. (4.2)

Proof. Assume that X has a density given by fX . We, now, show that f given by Equation (4.2) coincide with fX . The
idea is to use Fubini theorem to exchange the order of integration of y and ξ but the lack of integrability prevents us to
use it directly. For that purpose, we introduce a quantity on which it is possible to use Fubini's theorem and then see
that it approximates the case of interest. Let

Iεpxq “
1

p2πqk

ĳ

RkˆRk

exppipx´ yq ¨ ξq exp
´

´ ε2 ξ
2

2

¯

dµpyqdξ.

By integrating in y (implicitly using Fubini theorem) we get that

Iεpxq “
1

p2πqk

ż

Rk
exppix ¨ ξq exp

´

´ ε2 ξ
2

2

¯

φµp´ξqdξ

and then taking the limit for εÑ 0 and using dominated convergence theorem, we get

lim
εÑ0

Iεpxq “
1

p2πqk

ż

Rk
exppix ¨ ξqφµp´ξqdξ “ fpxq.

On the other side, by integrating �rst on the variable ξ, we get

Iεpxq “
1

p2πεqk

ż

Rk

ˆ
ż

Rk
exp

´

i
1

ε
px´ yq ¨ εξ

¯

exp
´

´ ε2 ξ
2

2

¯

εkdξ

˙

dµpyq

“
1

p
?

2πεqk

ż

Rk
exp

´

´
}x´ y}2

2ε

¯

fXpyqdy

The quantity converges (in L1pRkq) to fXpxq since the function ρε de�ned by

ρεpzq “
1

εk
ρpzq where ρpzq “

1

p2πqk{2
expp´

z2

2
q
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is a regularizing function (see Proposition 34). By unicity of the limit, fX “ f . The fact that X has a density implies
φX P L1pRkq is obtained by considering |φXpξq| “

a

φXpξqφ´Xpξq and

ż A

´A

|φXpξq| ď

d

ĳ

2
sinpApx´ yqq

x´ y
fXpxqfXpyqdxdydξ

which is trivially upper bounded. For the other sense, the existence is the consequence of Equation (4.2) which gives the
continuity of fX by use of dominated convergence theorem.

4.2.3 The characteristic function characterizes the law

The characterization of the law of a random variable is given by Theorem 3.

Proposition 9. Let X and Y be two random vectors such that φX “ φY . Then, the distribution of X and the distribution
of Y are equal.

Proof. Let Z „ Nkp0, 1q be a gaussian random vector independent from X and Y . Let σ ą 0 and the two random vectors
Xσ “ X ` σZ and Yσ “ Y ` σZ so that φXσ “ φYσ (use Proposition 6). By Proposition 8, Xσ and Yσ have continuous
and bounded density. Now, using Theorem 3 we have that Xσ „ Yσ. Letting σ Ñ 0, we see that X „ Y by unicity of the
limit for the convergence in distribution.

4.3 Levy's theorem

Theorem 4. Let pFnqn be a sequence of distribution functions on the space Rk and for any n P N let φn be the characteristic
function of Fn. Suppose that

φpθq :“ limφnpθq exists for all θ P Rk.

Then, the following are equivalent.

i) The sequence pXnqn is tight.

ii) The function φ is a characteristic function.

iii) The function φ is continuous at any θ in Rk.

iv) The function φ is continuous at 0.

In particular, when one of these conditions is veri�ed, there exists a distribution function F (hence there exists a random
variable X „ F ) such that φ “ φF and

Fn
pdq
ÝÑ F por equivalently Xn

pdq
ÝÑ Xq.

Proof. We have iiq ùñ iiiq from Proposition 6 and iiiq ùñ ivq is obvious.

iq ùñ iiq By Helly Lemma (in Lemma 3), one can extract a sub-sequence nk such that Fnk
pdq
ÝÑ F , where F is a

distribution function (by the tightness of the sequence). By Lemma 1, we have that φnk ÝÑ φF (pointwise). Obviously,
one has to be careful about using Lemma 1 for Lipschitz function of complex values but one can always decompose
eiθX “ cospθXq ` i sinpθXq which are two real valued bounded Lipschitz functions. By unicity of the limit, we have
φ “ φF and then φ is a characteristic function.
Proof of the last sentence We just showed the existence of the distribution function F . Now assume that Fn do not
converge weakly to F . Then, there exists a point of continuity x of F (the set of points of continuity is never empty since
the points of discontinuity are at most countable) and η ą 0 such that there exists a sub-sequence pniqi such that

|Fnipxq ´ F pxq| ě η.

By another use of Helly's lemma, one can �nd a sub-sequence of pniqi denoted pnij qj such that Fnij
pdq
ÝÑ rF where rF is

a distribution function (by the tightness of the original sequence). Hence, φnij Ñ φ
rF “ φF . By the uniqueness of the

characteristic function (by Proposition 9), we have rF “ F and then Fnij pxq Ñ F pxq which is absurd.

ivq ùñ iq We �rst show the result in dimension 1 (k=1). Let ε ą 0. The quantity φnpθq ` φnp´θq is real and bounded
(by 2). By continuity of φ in 0, we can �nd δ ą 0 such that @|θ| ă δ, |1´ φpθq| ă ε{4 and

0 ă δ´1

ż δ

0

p2´ φpθq ´ φp´θqqdθ ď
ε

2
.
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Then by the (DOM) theorem (Theorem 32), Dn0 such that @n ě n0,

δ´1

ż δ

0

p2´ φnpθq ´ φnp´θqqdθ ď ε.

Then, �rst using Fubini theorem,

ε ě δ´1E

«

ż δ

´δ

p1´ eiθXnqdθ

ff

“ 2E
„

1´
sinpδXnq

δXn



ě 2E
„

1|Xn|ą2δ´1

ˆ

1´
1

|δXn|

˙

ě E
“

1|Xn|ą2δ´1

‰

“ P
`

|Xn| ą 2δ´1
˘

.

Since, the choice of δ is not depending on n, we have shown that the sequence pXnqněn0
is tight. But one can trivially

add any �nite sequence of random variables to a tight sequence and the resulting sequence keeps being tight.
For the general case, one has to replace the real valued quantity φnpθq ` φnp´θq by a new one. For k “ 2, fpθ1, θ2q “

φnpθ1, θ2q ` φnpθ1,´θ2q “ E
“

eiθ1Xn,12 cospθ2Xn,2q
‰

. One has to de�ne the real valued gpθ1, θ2q “ fpθ1, θ2q ` fp´θ1, θ2q

to replace the previous quantity. The arguments remain the same and are easily generalizable to any dimension.

A obvious use of the previous theorem allows us to derive a usefull corollary.

Corollary 1 (Cramer-Wold device). Let pXnqn be a sequence of random variables in Rk. Then

Xn
pdq
ÝÑ X ô @t P Rk, tTXn

pdq
ÝÑ tTX

Proof. Exercice [ref section exercices]

Example 2. Let Z be a random vector of law Nkpµ,Σq, [DEFINE THE DISTRIBUTION] then

φZpθq “ eiθ
Tµ´ 1

2 θ
TΣθ.

To see this, one can use the Cramer-Wold device and compute the characteristic function of tTZ for any t P Rk. The
random variable tTZ is normal by de�nition and E

“

tTZ
‰

“ tTµ,

Var
`

tTZ
˘

“ E
“

ptTZ ´ tTµq2
‰

“ E
“

ptTZ ´ tTµqptTZ ´ tTµqT
‰

“ tTE
“

pZ ´ µqpZ ´ µqT
‰

t “ tTΣt

Now using the result of Example 1, we have

φZpθq “ φθTµ,θTΣθp1q “ exp

ˆ

ipθTµq ˆ 1´
θTΣθ ˆ 12

2

˙

4.4 Law of Large Numbers and Central Limit Theorem

4.4.1 The Central Limit Theorem

We use Theorem 4 to prove the classical weak version of the Law of Large Numbers (LLN) and the Central Limit Theorem
(CLT).

Theorem 5 (CLT). Let X1, . . . , Xn be i.i.d random variables (en R) with E rX1s “ 0 and E
“

X2
1

‰

“ σ2. Let Xn “

n´1
ř

Xi. Then, the sequence
?
nXn converges in distribution towards N p0, σ2q.

Proof. We use Levy's theorem. Let φ “ φX1 . The existence of the two �rst derivative are given by Proposition 6 and
φ1p0q “ iE rX1s “ 0 as well as φ2p0q “ i2E

“

X2
1

‰

“ ´σ2. By independence, we see that

E
”

eit
?
n Xn

ı

“ φn
ˆ

t
?
n

˙

“

ˆ

1´
t2σ2

2n
` o

ˆ

1

n

˙˙n

ÝÑ
nÑ`8

e´
t2σ2

2 .

Since the function t ÞÑ e´t
2σ2

{2 is continuous in 0 and is the characteristic function of N p0, σ2q, we have the conclusion.

One can directly use the Cramer-Wold device to get the mutlidimensional version of the (CLT).

Theorem 6. Let X1, . . . , Xn be i.i.d. random vectors in Rk, with µ “ E rX1s and Σ “ E
“

pX1 ´ µqpX1 ´ µq
T
‰

, we get
that

1
?
n

n
ÿ

i“1

pXi ´ µq
pdq
ÝÑ Nkp0,Σq.

Proof. Use Cramer-Wold device with the fact that @t P Rk, the familly of Yi “ pt
TXi ´ t

Tµqi satis�es Theorem 5.
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4.4.2 The Law of Large Numbers

We show the weak version of law of large numbers. The naming weak comes from the fact that the convergence occurs in
probability eventhough it is known to be true in the a.s. convergence under the same set of hypothesis. Nevertheless, a
few more tools are needed for that purpose.

Proposition 10 (LLN). Let X1, . . . , Xn be i.i.d random variables of characteristic function φ. Assume that φ1p0q “ iµ

for a µ P R, then Xn
P
ÝÑ µ.

Proof. Expanding φ, we get φptq “ 1` tφ1p0q ` optq when tÑ 0. Then

E
”

eitXn
ı

“ φn
ˆ

t

n

˙

“

ˆ

1`
itµ

n
` o

ˆ

1

n

˙˙n

ÝÑ
nÑ`8

eitµ

which is the characteristic function of a constant (equal to µ) random variable. Since the limit is constant, the convergence
in distribution transfers to a convergence in probability (by Theorem 2).

Exercice 14. Show the mutlidimensional version of Proposition 10.

4.5 Rare events theorem

Theorem 7 (Rare events). Let pXn,jq1ďjďMn be a family of independent Bernoulli random variables of parameter pn,j.
Assume that

(i) Mn is increasing and tends towards `8.

(ii)
řMn

j“1 pn,j ÝÑ
nÑ`8

λ ą 0.

(iii) max1ďjďMn
pn,j ÝÑ

nÑ`8
0.

Then, if Sn “ Xn,1 ` ¨ ¨ ¨ `Xn,Mn
, we have Sn

pdq
ÝÑ Ppλq (the Poisson distribution of parameter λ).

Proof. By independence of the random variables Xn,j , we have that

φSnptq “
Mn
ź

j“1

φXn,j ptq “
Mn
ź

j“1

ppn,je
it ` 1´ pn,jq “

Mn
ź

j“1

p1` pn,jpe
it ´ 1qq.

Let log be the principal determination of the complex logarithm (on Czp´8, 0s). Then, using Taylor's formula for the
function t ÞÑ logp1` tzq, we have that for any z such that |z| ă 1,

logp1` zq “ z ´ z2

ż 1

0

p1´ uq
1

p1` uzq2
du.

Now take z “ eit ´ 1. By piiiq, for n large enough, one has that max1ďjďMn
pn,j ď 1{2. So

ˇ

ˇ

ˇ

ˇ

ˇ

Mn
ÿ

j“1

p2
n,jz

2

ż 1

0

p1´ uq
1

p1` upn,jzq2
du

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

max
1ďjďMn

pn,j

˙ Mn
ÿ

j“1

pn,j

ż 1

0

p1´ uq
1

p1{2q2
du ÝÑ

nÑ`8
0,

then log φSnptq is well de�ned and
Mn
ÿ

j“1

logp1` pn,jpe
it ´ 1qq ÝÑ

nÑ`8
λpeit ´ 1q.

This implies that φSnptq Ñ eλpe
it
´1q which is the characteristic function of Ppλq and we conclude by using Levy's

theorem.



Chapter 5

Lindeberg-Feller theorem

The theorem of Lindeberg and Feller deals with the non-i.i.d. case in the Central Limit Theorem. It can also be used
when the distribution of each variable depends on n, the number of observations.

Theorem 8 (Lindeberg-Feller). Let pknqn be a sequence of integers. For every n P N, we assume to have access to
pXn,1, . . . , Xn,knq a collection of independent random vectors (i.e. @i,Xn,i P Rd). Assume that

1. Rn :“
kn
ř

i“1

E
“

}Xn,i}
2
1}Xn,i}ąε

‰

ÝÑ
nÑ`8

0, @ε ą 0.

2.
kn
ř

i“1

CovpXn,iq ÝÑ
nÑ`8

Σ

Then
kn
ř

i“1

Xn,i ´ E rXn,is
pdq
ÝÑ
nÑ`8

N p0,Σq.

Proof. We divide the proof in four steps.

Step 1: Reduction to the real case Without any restriction of generality, we can assume (by a centering) E rXn,is “ 0.
By the result of Cramer-Wold 1, it is su�cient to show that for all t P Rd,

tT
kn
ÿ

i“1

Xn,i
pdq
ÝÑ
nÑ`8

N
`

0, tTΣt
˘

.

Let �x t P Rd. It is easy to see that the hypothesis of the theorem imply the same hypothesis for the random variables
tTXn,i. Indeed,

E
“

ptTXn,iq
2
1|tTXn,i|ąε

‰

ď E
“

}t}2}Xn,i}
2
1}tT }}Xn,i}ąε

‰

“ }t}2E
”

}Xn,i}
2
1}Xn,i}ą

ε
}t}

ı

ÝÑ 0

and

kn
ÿ

i“1

E
“

ptTXn,iq
2
‰

“

kn
ÿ

i“1

E
“

tTXn,iX
T
n,it

‰

“ tT
`

kn
ÿ

i“1

CovpXn,iq
˘

t ÝÑ tTΣt.

Then, it is enough to show the theorem for real valued random variables only. For the rest of the proof, we assume that
@i, Xn,i P R.

Step 2: Variance control We denote by σ2
n,i “ E

“

X2
n,i

‰

and σ2
n “

řkn
i“1 σ

2
n,i, then, by assumption, σ2

n converges to a

�nite quantity that we denote σ2. Furthermore,

sup
i“1,...,kn

σ2
n,i “ sup

i“1,...,kn

`

E
“

X2
n,i1|Xn,i|ďε

‰

` E
“

X2
n,i1|Xn,i|ąε

‰˘

ď ε2 `

kn
ÿ

i“1

E
“

X2
n,i1|Xn,i|ąε

‰

“ ε2 `Rn.

Fix ε0 ą 0 and ε “
a

ε0{2. There exists N0 such that @n ě N0, Rn ď ε0{2. Hence, supi“1,...,kn σ
2
n,i tends to 0. By

assumption, σn has a non-zero limit which implies that, @δ ą 0, Dn0,@n ě n0,@i P t1, . . . , knu

|σ2
n,i| ď δσ2

n (5.1)
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Step 3: An equivalence Let Sn “
řkn
i“1Xn,i. We have to show that

φSnptq ÝÑ
nÑ`8

e´
1
2 t

2σ2

. (5.2)

We begin with showing that (5.2) is equivalent to

kn
ÿ

i“1

φXn,iptq ´ 1 ÝÑ
nÑ`8

´
1

2
t2σ2. (5.3)

For that purpose, we use the following lemma which is proved in Section 15.1.

Lemma 5. Let a1, . . . , an and b1, . . . , bn be complex numbers such that @i, |ai| ď 1 and |bi| ď 1. Then

|a1a2 . . . an ´ b1b2 . . . bn| ď
n
ÿ

i“1

|ai ´ bi|.

Using the previous lemma with the complex numbers ai “ eφXn,i ptq´1 and bi “ φXn,iptq, of modulus bounded by 1, we
have

ˇ

ˇ

ˇ
e
řkn
i“1pφXn,i ptq´1q

´ φSnptq
ˇ

ˇ

ˇ
ď

kn
ÿ

i“1

|eφXn,i ptq´1
´ φXn,iptq|

ď

kn
ÿ

i“1

|φXn,iptq ´ 1|2

2
(5.4)

where we used that for any z P C such that <pzq ď 0, it holds that |ez ´ 1´ z| ď |z|2{2. See Lemma 30 for a proof of this
fact. Using the Taylor-Young formula,

|φXn,iptq ´ 1| “ |φXn,iptq ´ 1´ tφ1Xn,ip0q| “

ˇ

ˇ

ˇ

ˇ

ż t

0

px´ tqφ2Xn,ipxqdx

ˇ

ˇ

ˇ

ˇ

ď
t2

2
σ2
n,i.

where we used |φ2Xn,ipxq| ď E
“

X2
n,i

‰

“ σ2
n,i. Then, plugging it in (5.4) and using (5.1), we �nally show

ˇ

ˇ

ˇ
e
řkn
i“1pφXn,i ptq´1q

´ φSnptq
ˇ

ˇ

ˇ
ď
t4

8

kn
ÿ

i“1

σ4
n,i ď

t4

8
σ2
nδ

This shows that the left hand side quantity tends to 0 when n goes to in�nity. Finally, by triangular inequality, we have
showed (5.2) ô (5.3).

Finish It remains to show (5.3). By the mean value theorem, there exists ct P r0, ts such that

kn
ÿ

i“1

φXn,iptq ´ 1`
t2

2
σ2
n “

kn
ÿ

i“1

φXn,iptq ´
`

φXn,ip0q ` tφ
1
Xn,ip0q `

t2

2
φ2Xn,ip0q

˘

“

kn
ÿ

i“1

t2

2
pφ2Xn,ipctq ´ φ

2
Xn,ip0qq

“

kn
ÿ

i“1

t2

2
E
“

´X2
n,ipe

ictXn,i ´ 1q
‰

ď
t2

2

kn
ÿ

i“1

E
“

X2
n,i|e

ictXn,i ´ 1|1|Xn,i|ďε
‰

` t2
kn
ÿ

i“1

E
“

X2
n,i1|Xn,i|ąε

‰

ď
t2

2

kn
ÿ

i“1

ctεσ
2
n,i ` t

2Rn ď
t3

2
σ2
nε` t

2Rn

Since this is true for every ε ą 0 and that σ2
n ÝÑ σ2 and Rn ÝÑ 0, we showed (5.3). By the use of Levy's theorem 4, on

limiting characteristic function t ÞÑ e´t
2
{2σ2

of a centered normal with variance σ2 (continuous at 0), we have �nished the
proof.

5.0.1 Application to regression problems



Chapter 6

Dependent limit theorems

In this chapter we deal with the case of random variables that may be possibly weakly dependent. We assume that the
random variables pXiqi are centered (i.e. E rXis “ 0). If one wants to avoid assuming that condition, it will ba at the cost
of assuming that

1

n

n
ÿ

i“1

E rXis ÝÑ
nÑ`8

`

for a ` P R.

6.1 Weakly dependent laws of large numbers

6.1.1 Weak law of large numbers under dependence

Proposition 11. Let X1, . . . , Xn be real random variables such that @i, E rXis “ 0. Assume that

•
ř

iVar pXiq “ opn2q

• There exists φ : NÑ R` such that @i, j, |Cov pXi, Xjq | ď φp|i´ j|q and

1

n

n
ÿ

i“1

φpiq ÝÑ
nÑ`8

0

Then

Sn “
1

n

n
ÿ

i“1

Xi
P
ÝÑ 0.

Proof. By Chebyshev's inequality, it is su�cient to prove that Var pSnq Ñ 0.

Var pSnq “
1

n2

n
ÿ

i“1

Var pXiq `
2

n2

n´1
ÿ

i“1

n
ÿ

j“i`1

Cov pXi, Xjq

ď
1

n2

n
ÿ

i“1

Var pXiq `
2

n2

n´1
ÿ

i“1

n´i
ÿ

k“1

φpkq

“
1

n2

n
ÿ

i“1

Var pXiq `
2

n2

n´1
ÿ

k“1

pn´ kqφpkq

ď
1

n2

n
ÿ

i“1

Var pXiq `
2

n

n
ÿ

k“1

φpkq “ op1q

Of course, one could replace the second condition of Proposition 11 by the stronger Cov pXi, Xjq Ñ 0 when |i´ j| Ñ 8.
The �rst condition is trivially satis�ed when the Xi's are identically distributed or when one can �nd c ą 0 such that @i,
Var pXiq ď c.
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6.1.2 Strong law of large numbers under dependence

One option to prove strong dependent law of large numbers is Lemma 47, at the cost of assuming a uniform bound by at
integrable variable X.

Corollary 2. Assume the hypothesis of Proposition 11 and @i, |Xi| ď X such that E rXs ă 8, we obtain that

Sn
a.s.
ÝÑ 0.

It is also possible to prove a version of it using martingales techniques. The centering has to be handled carefully since,
in general, the sum of dependent random variables does not satisfy the martingale axioms. We use the notation Fi for
the �ltration corresponding to σpX1, . . . , Xiq.

Proposition 12. Let X1, . . . , Xn be real random variables such that @i, E rXis “ 0. Assume that there exists r ě 0 such
that for all i, j such that |i´ j| ě r, Xi and Xj are independent. Assume that

• For all i “ 1, . . . , n and j “ 1, . . . , r, E rVar pXi|Fi´jqs ď σ2
i .

•
ř

i σ
2
i ă 8.

Then
řn
i“1Xi converges almost surely towards 0.

Note that the assumptions of Proposition 12 include the assumptions of Proposition 11 when one apply it for the random
variables n´1Xi.

Proof. The proof uses the fact that a martingale bounded in L2 is almost surely convergent. Let Yi “ Xi ´ E rXi|Fi´1s

so that Mt “
řt
i“1 Yi is a martingale.

E
“

M2
n

‰

“

n
ÿ

i“1

E
“

pMi ´Mi´1q
2
‰

“

n
ÿ

i“1

E
“

Y 2
i

‰

“

n
ÿ

i“1

E rVar pXi|Fi´1qs ď

n
ÿ

i“1

σ2
i

Then the martingale pMnqn is bounded in L2 and its limit exists and the convergence is almost sure. Now de�ne
Zi “ E rXi|Fi´1s ´ E rXi|Fi´2s. The sum pNnqn of the random variables Zi is again a martingale bounded in L2 for the
same kind of calculations. Then, identically, Nn converges almost surely. Following this scheme, we can write

ř

iXi as a
sum of r martingales of the form

t
ÿ

i“1

E rXi|Fi´js ´ E rXi|Fi´j´1s

that all converge almost surely. Then,
ř

iXi converges almost surely to a random variable X. Since the assumptions of
Proposition 11 are ful�lled, the only possible limit is 0.

Of course, one can imagine generalizations of the previous result when the resulting convergence for the martingales are
of type `bounded in L1' only using �rst moments conditions. It is also possible to generalize Kolmogorov three series
theorem in the case of weak dependence. Finally, the weak dependence condition of Proposition 12 does not have to be of
uniform �avor and a bound depending on j is possible as long has one ask for the convergence of the series of variances.

6.2 Central Limit Theorems under dependence

In this section, we expose weak dependence central limit theorems using the ideas of Lindeberg-Feller theorem. This
section follows the work of [6].

6.2.1 Bernstein blocks

Assume given a sequence of random variables X1, . . . , Xn, we decompose its sum into blocks of two di�erent size. This is
the so-called Berstein block technique. Let ppnqn and pqnqn be two sequences such that

pn ÝÑ
nÑ`8

`8, qn ÝÑ
nÑ`8

`8, q “ oppq, p “ opnq.

We split Sn “
řn
i“1Xi into blocks of di�erent size. The bene�t from this technique is to be able to make use of gaps (of

size qn) between blocks as well as the fact that the blocks of size qn are too small to count in the �nal convergence.

Sn “
k
ÿ

i“1

εi `
k`1
ÿ

i“1

νi “ Zk ` Z
1
k`1,



6.2. CENTRAL LIMIT THEOREMS UNDER DEPENDENCE 33

where for 1 ď i ď k,

εi “

ip`pi´1qq
ÿ

pi´1qp`pi´1qq`1

Xj , νi “
ip`iq
ÿ

ip`pi´1qq`1

Xj (6.1)

and νk`1 “
řn
kpp`qq`1Xj where pn “ p, qn “ q and k “ tn{pp ` qqu. In the following result, we encode the good

assumptions to obtain that the part Z 1k`1 does not in�uence the convergence.

Lemma 6. Let X1, . . . , Xn be real random variables. Let Sn “
řn
i“1Xi and σ

2
n “ Var pSnq. Assume that for two sequences

verifying (6.1), we have that

1. 1
σ2
n
E
”

Z
12
k`1

ı

ÝÑ
nÑ8

0,

2. Ck,g,hptq :“
řk
j“2

ˇ

ˇ

ˇ
Cov

´

g
´

t
σn

řj´1
i“1 εi

¯

, h
´

t
σn
εj

¯¯
ˇ

ˇ

ˇ
ÝÑ
nÑ8

0, for all t P R and g, h P tcos, sinu,

3. 1
σ2
n

řk
i“1 E

“

ε2
i1|εi|ěεσn

‰

ÝÑ
nÑ8

0, for all ε ą 0,

4. 1
σ2
n

řk
i“1 E

“

ε2
i

‰

ÝÑ
nÑ8

1.

Then, Sn{σn converges in distribution towards N p0, 1q.

Proof. Since Sn{σn “ Zk{σn `Z
1
k`1{σn, assumption 1. and Slutsky's lemma show that the limit in distribution of Sn{σn

is the same as the limit of Zk{σn. We follow the proof of Theorem 8 on the random variables εi. Assumptions 3. and 4.
give an equivalent of (5.1) for the sequence pεiqi which is

sup
i
σ2
n,i ď δσ2

n,

where σ2
n,i “ Var pεiq. The challenging part is the one corresponding to Step 3 of Theorem 8 and more particularly the

�rst line of (5.4).

ˇ

ˇ

ˇ
e
řk
i“1pφεi{σn ptq´1q ´ φZk{σnptq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

e
řk
i“1pφεi{σn ptq´1q ´

k
ź

i“1

φεi{σnptq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

φεi{σnptq ´ φZk{σnptq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k
ÿ

i“1

|eφεi{σn ptq´1 ´ φεi{σnptq| ` 4 max
g,hPtcos,sinu

Ck,g,hptq

where we used the fact that eitx “ cosptxq ` i sinptxq and a telescopic sum. The �rst term can be handled in the same

way as in Theorem 8 whereas the second term tends to 0 by asumption. Finally, the convergence of
řk
i“1pφεi{σnptq ´ 1q

is completely similar and we get that Zn{σn
pdq
ÝÑ N p0, 1q.

[WRITE def1 and the proof of Proposition 1 of Doukhan]
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Chapter 7

Concentration inequalities

In this chapter we derive an important class of results called concentration inequalities. They are a tool to control the
deviation of a function of a certain number of independent random variables around its expected value. A concentration
inequality is a result of the form

P pZ ´ E rZs ě tq ď gptq

where the function g is a function depending on the distribution of Z.

Figure 7.1: The concentration inequality of Bienaymé-Tchebychev

When Z “ Zn :“ fnpX1, . . . , Xnq is function of independent random variables X1, . . . , Xn, one includes the dependence
in n in the deviation function so that

P pZ ´ E rZs ě tq ď gpn, tq. (7.1)

We expect to �nd a non-increasing function g with respect to its arguments n and t. The advantage of such results is
that they permit to express statistical or probabilistic results valid for a �xed value of the number n of variables in the
problem. It has to be expected that the concentration inequalities involve worse constants than in asymptotic theorems.
Indeed, if we assume that Zn converges to a limit variable Y , since the concentration inequalities (7.1) are valid for every
n, and that the concentration of the asymptotic variable Y only veri�es (7.1) in the limit sense, we logically get worse
bounds. This chapter is highly inspired by the excellent [2].

Figure 7.2: In solid line represents the distribution of a variable Zn. The dotted line is a concentration inequality (here
Bienaymé-Tchebychev). The dashed line represents the asymptotic distribution of the variable Zn.
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7.1 Cherno� Inequality

7.1.1 Basic principals

Here we show Markov's inequality and its direct consequences.

Proposition 13. Let X be a real random variable. We assume that X is non-negative, then

@t ą 0, P pX ě tq ď
E rXs
t

.

Proof. We write X “ X1Xět `X1Xăt ě t1Xět, hence taking the expectation we get the result.

Exercice 15. Show that a non-negative random variable X that can be written as Y gpXq where g is a non-increasing

function satisfy P pX ě tq ď ErY sgptq
t .

Exercice 16. Show that for any p1 ą p ě 1, we have

E
“

|X|p1|X|ět
‰

ď t1´
p1

p E
”

|X|p
1
ı

A direct corollary of Markov inequality is the following so called Bienaymé-Tchebychev inequality.

Corollary 3. For any real random variable X, we have that for any positive t, P p|X ´ E rXs | ě tq ď VarpXq
t2 .

Proof. Apply the Markov's inequality for the non-negative random variable pX ´ E rXsq2.

The idea behind Bienaymé-Tchebychev inequality is somehow generic in the theory of concentration inequalities. The
upcoming transformation of the random variable X replaces the transformation X Ñ pX ´E rXsq2 of the precedent proof
the transform xÑ exppλxq which depends on a parameter λ that is optimized at some step in the proof. The function

λ ě 0 ÞÑ ΨZpλq “ logE rexppλZqs

is called the Cramér-Cherno� transform of Z. The dual function Ψ˚Z is given by

Ψ˚Zptq “ sup
λě0
pλt´ΨZpλqq

and is called Fenchel-Legendre transform. Following the path of the proof of Bienaymé-Tchebychev's inequality, we
obtain (after optimization in λ) the following corollary.

Corollary 4. For any real valued random variable Z, we have that

P pZ ě tq ď exp p´Ψ˚Zptqq

for any t ą 0.

Comments It is clear that ΨZp0q “ 0 which implies directly that Ψ˚Zptq ě 0 as it is a suprema of a set containing 0.
When E rZs exists, Jensen's inequality implies that ΨZptq ě λE rZs. Hence, when t ď E rZs, we have that λt´ΨZpλq ď 0
and Ψ˚Zptq “ 0. This result is then empty when t ď E rZs. For that speci�c reason, we will usually center the random
variable Z (i.e. E rZs “ 0 is assumed at the cost of changing Z into Z ´ E rZs). Furthermore, when E rZs “ 0, λ ď 0 and
t ě 0, another use of Jensen's inequality gives λt´ΨZpλq ď 0 and then

Ψ˚Zptq “ sup
λPR
pλt´ΨZpλqq

Proof. For any λ ě 0, using Markov's inequality for the non-negative random variable eλZ and by the monotonicity of the
exponential,

P pZ ě tq ď e´λtE
“

eλZ
‰

“ e´pλt´ΨZpλqq.

Now, using the fact that the probability on the left hand side is not depending on the parameter λ ě 0, we �nally have
that

P pZ ě tq ď inf
λě0

e´pλt´ΨZpλqq “ e´Ψ˚Zptq.
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7.1.2 Examples

Gaussian random variables Let Z be a gaussianN
`

0, σ2
˘

random variable. Since E
“

eλZ
‰

“ eλ
2σ2

{2, ΨZpλq “ λ2σ2{2.
Then

Ψ˚Zptq “ sup
λPR
pλt´

λ2σ2

2
q “

t2

2σ2

and as expected, one has P pZ ě tq ď e´t
2
{2σ2

.

Poisson random variables Let Y be a Poisson Ppνq random variable and de�ne Z “ Y ´ ν. The moment generating
function is given by

E
“

eλZ
‰

“ e´λνe´ν
8
ÿ

k“0

peλνqk

k!
“ e´λν´νeνe

λ

,

then ΨZpλq “ νpeλ´λ´ 1q. Let ftpλq “ λt´ νpeλ´λ´ 1q, then f 1tpλq “ t´ νpeλ´ 1q and the maximum of ft is attained
at λ “ logp1` t{νq. This gives

Ψ˚Zptq “ νhpt{νq where hpxq “ p1` xq logp1` xq ´ x.

Since hpxq „
xÑ`8

x logpxq, Ψ˚Zptq „
tÑ`8

t logpt{νq „ t logptq and then P pY ´ ν ě tq “ O
tÑ`8

`

e´t logptq
˘

. With extra

calculation, one can easily prove that

hpxq ě
x2

2p1` u
3 q
,

which actually shows that the Poisson random variables have a sub-Gamma tail in the sense of De�nition 5 below.

Sub-Gamma random variables See Proposition 15.

7.1.3 Sub-Gaussian and sub-Gamma random variables

De�nition 5. We say that a random variable X is

• a sub-Gaussian random variable of constant ν ą 0 if @λ P R, ΨXpλq ď λ2ν{2. We denote X P Gpνq.

• a sub-Gamma random variable to the right, of constant ν ą 0 and c ą 0 if

ΨXpλq ď
λ2ν

2p1´ 2cλq
for any 0 ă λ ă 1{c.

We denote X P Γ`pν, cq. If ´X is sub-Gamma to the right, we say that X P Γ´pν, cq. We �nally note Γpν, cq “
Γ`pν, cq X Γ´pν, cq.

For equivalent de�nitions/characterization of sub-Gaussian and sub-Gamma random variables, one can take a look at the
�rst chapter of [2]. Of course, the vocabulary is relevant as seen in the following example.

Example 3. A gaussian N
`

0, σ2
˘

random variable is sub-gaussian Gpσ2q.

De�nition 5 is only one of some possibilities for the de�nition of sub-Gaussian random variables. It is actually possible to
show that one can characterize those random variables with its moments and also by the existence of a Orlicz norm for
the function φpxq “ ex

2

´ 1 (see De�nition 6).

Proposition 14. Let X be a real valued random variable with E rXs “ 0 then the following are equivalent.

1. X is sub-Gaussian.

2. There exists ν ą 0 such that for all t ą 0, P pX ě tq _ P p´X ě tq ď e´t
2
{2ν .

3. There exists C ą 0, s.t. for any integer q ě 1, E
“

X2q
‰

ď q!pCqq.

4. There exists c ą 0, s.t. E
”

eX
2
{c2

ı

ď 2.

Exercice 17. Prove Proposition 14.
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Example 4. A Gamma random variable Y of parameters pa, bq is sub-Gamma Γpab2, bq. Indeed, E rY s “ ab and Var pY q “
ab2. Let X “ Y ´ ab then for any λ ă 1{b,

E
“

eλX
‰

“

ż `8

0

eλpy´abq
ya´1e´

y
b

Γpaqba
dy “ e´λabp1´ λbq´a

and @λ ă 1{b, ΨXpλq “ ´λab´ a logp1´ λbq. But since, logp1´ uq ´ u ď u2{p2p1´ uqq, we have

@λ P p0, 1{bq, ΨXpλq ď
λ2ab2

2p1´ λbq
.

For λ ă 0, which correspond to computing the Legendre transform for ´X, using ´ logp1´ u´ u ď u2{2q, we get

ΨXpλq ď
aλ2b2

2

which gives that X´ P Gpab2q Ă Γ`pab
2, 0q Ă Γ`pab

2, bq. Then X P Γpab2, bq. It is interesting to see that the two tails of
a Gamma random variable are unbalanced. The right part is sub-Gamma whereas the left tail is actually sub-Gaussian.
In some cases, the behaviors of the tails on the left and on the right are di�erent and one may study them separately.
The tail of the sub-Gamma concentration is slightly di�erent from the concentration of sub-Gaussian random variables.
The precise statement is as follows.

Proposition 15. Let X P Γpν, cq then for all t ą 0,

P
´

X ą
?

2νt` ct
¯

ď e´t P
´

´X ą
?

2νt` ct
¯

ď e´t

Proof. Since ΨXpλq ď
νλ2

2p1´cλq ,

ΨXptq ě sup
λPp0,1{cq

ˆ

tλ´
λ2ν

2p1´ cλq

˙

“
ν

c2
g

ˆ

ct

ν

˙

where gpuq “ 1` u´
?

1` 2u for u ě 0. Then

P pX ě tq ď exp

ˆ

´
ν

c2
g

ˆ

ct

ν

˙˙

but since g´1puq “ u`
?

2u, one has directly P
`

X ą
?

2νt` ct
˘

. The left tail is handled in the same way.

The following result deals with the inverse of the Fenchel-Legendre transform.

Lemma 7. Let ψ be a convex function such that ψp0q “ ψ1p0q “ 0 that we assume di�erentiable on r0, bq for 0 ă b ď `8.
For any T ě 0, we de�ne,

ψ˚ptq “ sup
λPr0,bq

pλt´ ψpλqq.

Then ψ˚ is positive, increasing and convex on p0,`8q, is such that ψ˚p0q “ 0 and

ψ˚´1pyq “ inf
λPp0,bq

„

y ` ψpλq

λ



.

Proof. As a direct consequence of the assumptions, ψ is a non-decreasing function and then is non-negative on r0, bq.
This triggers that ψ˚p0q is a supremum of non-positive values where 0 is among them. This shows that ψ˚p0q “ 0. As
a supremum of convex and non-decreasing functions ψ˚ is convex and non-decreasing. Hence ψ˚ is non-negative. Now
assume that there exists t ą 0, such that ψ˚ptq “ 0, then for any λ P p0, bq, ψpλq ě λt. But, then ψ1p0q ě t ą 0 which is
absurd. This shows directly that ψ˚ is also increasing. Let

u “ inf
λPp0,bq

„

y ` ψpλq

λ



then for any t ě 0,

u ě t ô @λ P p0, bq,
y ` ψpλq

λ
ě t ô @λ P p0, bq, y ě λt´ ψpλq ô y ě ψ˚ptq.

This equivalence shows that u “ ψ˚´1pyq in the generalized inverse framework but since the actual inverse of ψ˚ exists
(since it is a continuous increasing function on p0, bq) it coincide with the regular notion of inverse.
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Proposition 16. Let Z1, . . . , ZN be real valued random variables such that for all λ P p0, bq,

@i, ΨZipλq ď ψpλq

where ψ is convex di�erentiable and such that ψp0q “ ψ1p0q “ 0. Then

E
„

max
i“1,...,N

Zi



ď ψ˚´1plogNq.

Proof. For any λ P p0, bq,

exp

ˆ

λE
„

max
i“1,...,N

Zi

˙

ď

N
ÿ

i“1

E rexppλZiqs ď N exppψpλqq,

which is equivalent to writing that λE rmaxi“1,...,N Zis ´ ψpλq ď logN or by optimization in λ,

E
„

max
i“1,...,N

Zi



ď inf
λPp0,bq

„

logN ` ψpλq

λ



.

We end by using Lemma 7.

Using Proposition 16, one can directly derive a bound for the expectation of the maximum of sub-Gamma random variables.
If Zi P Γpν, cq,

E
„

max
i“1,...,N

Zi



ď
a

2ν logN ` c logN.

7.1.4 Hoe�ding inequality

We begin with the concentration of a single bounded random variable.

Lemma 8 (Hoe�ding lemma). Let Y be a random variable with E rY s “ 0 and such that Y P ra, bs and let ΨY pλq “

logE rexppλY qs. Then, Ψ2pλq ď pb´aq2

4 and Y P G
´

pb´aq2

4

¯

.

Proof. Since |Y ´pa`bq{2| ď pb´aq{2, Var pY q “ Var pY ´ pa` bq{2q ď pb´aq2{4. For any λ ą 0, we de�ne a modi�cation
Pλ of the distribution P of Y by dPλpxq “ e´ΨY pλqeλxdP pxq. Then, since the support of Pλ is also ra, bs, we have that,
for Zλ „ Pλ, Var pZλq ď pb´ a

2{2q. But, immediate computations give

Ψ2Y pλq “ e´ΨY pλqE
“

Y 2eλY
‰

´ e´2ΨY pλqpE
“

Y eλY
‰

q2 “ E
“

Z2
λ

‰

´ E rZλs2 “ Var pZλq ď
pb´ aq2

4
.

By integration and the fact that Ψ1Y pλq “ E rY s “ 0 and also that ΨY p0q “ 0, we get

Ψ1Y pλq ď
λpb´ aq2

4
and ΨY pλq ď

λ2pb´ aq2

8
.

This concludes the proof.

This inequality applies directly in the context of sums of Rademacher variables. Indeed, if S “
řn
i“1 εiai then

E
“

eλS
‰

ď e
λ2

8

řn
i“1 a

2
i . (7.2)

A natural application of the precedent result is the so called Hoe�ding inequality given in the following theorem.

Theorem 9 (Hoe�ding inequality). Let X1, . . . , Xn be independent random variables such that for any i, Xi P rai, bis.
Let S “

řn
i“1Xi ´ E rXis. Then S P Gp

řn
i“1pbi ´ aiq

2{4q and

@t ě 0, P pS ě tq ď exp

ˆ

´
2t2

řn
i“1pbi ´ aiq

2

˙

.

Proof. Obviously,

E
“

eλS
‰

ď

n
ź

i“1

E
”

eλpXi´ErXisq
ı

ď

n
ź

i“1

e
λ2pbi´aiq

2

8 “ e
λ2 řn

i“1pbi´aiq
2

8
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We only derived the result as an upper bound on the tail probability on the right tail but the symmetrical nature of the
hypothesis give the exact same bound for the left tail. There are two generalization of the previous result that bene�t
from a di�erent manner to control the Laplace transform of the random variables. The independence is obviously crucial
in the arguments of the proofs. The �rst result gives that the tail concentration is of the form of a Poisson tail whereas
the second ensures that the tail is sub-Gamma.

Proposition 17 (Benett inequality). Let b ą 0 and φpuq “ eu ´ u´ 1 for u P R. Let X1, . . . , Xn be independent random
variables such that @i,Xi ď b. De�ne v “

řn
i“1 E

“

X2
i

‰

and S “
řn
i“1Xi ´ E rXis. Then

ΨSpλq ď
v

b2
φpbλq.

Consequently, @t ě 0 we have P pS ě tq ď expp´pv{b2qhptb{vqq where hpxq “ p1` xq logp1` xq ´ x for any x ą 0.

The attentive reader has noticed that the tail bound is exactly of the nature of a Poisson concentration as seen in Section
7.1.2.

Proof. We assume b “ 1 at the price of changing the random variables Xi in Xi{b. Notice that the function u ÞÑ φpuq{u2

is decreasing on R then, using that Xi ď 1,

eλXi ´Xi ´ 1 ď X2
i pe

λ ´ λ´ 1q,

which induces E
“

eλXi
‰

´ E rXis ´ 1 ď E
“

X2
i

‰

φpλq. Then,

ΨSpλq “
n
ÿ

i“1

pΨXipλq ´ λE rXisq

ď

n
ÿ

i“1

log
`

1` λE rXis ` E
“

X2
i

‰

φpλq
˘

´ λE rXis

ď

n
ÿ

i“1

E
“

X2
i

‰

φpλq “ vφpλq.

A even stronger result is the following.

Proposition 18 (Bernstein inequality). Let X1, . . . , Xn be independent random variables such that there exist c ą 0 and
v ą 0 such that

řn
i“1 E

“

X2
i

‰

ď v and

@q ě 3,
n
ÿ

i“1

E
“

pXiq
q
`

‰

ď
q!

2
vcq´2

where x` “ maxpx, 0q. Then, denoting S “
řn
i“1Xi ´ E rXis, we have that for all λ P p0, 1{cq and t ą 0,

ΨSpλq ď
vλ2

2p1´ cλq
and Ψ˚ptq ě

v

c2
g

ˆ

ct

v

˙

where gpuq “ 1` u´
?

1` 2u for u ą 0.

Then the concentration is sub-Gamma on the right. Obviously, one has to keep in mind that this result as the previous
one is not symmetric and then only holds for the right tail of the distribution of the sum. If one wants to get symmetric
concentration, the conditions have to be assumed on both sides of the distributions of the Xi.

Proof. We use another time the notation φpuq “ eu ´ u´ 1. For u ď 0, φpuq ď u2{2. Then, for λ ą 0,

φpλXiq ď φpλpXiq´q1Xiă0 ` φpλpXiq`q1Xiě0 ď
λpXiq

2
´

2
`

`8
ÿ

q“2

λqpXiq
q
`

q!
“
λpXiq

2

2
`

`8
ÿ

q“3

λqpXiq
q
`

q!
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from which we deduce
řn
i“1 E rφpλXiqs ď

v
2

ř8

q“2 λ
qcq´2. Finally,

ΨSpλq “
n
ÿ

i“1

logE
“

eλXi
‰

´ λE rXis

ď

n
ÿ

i“1

E
“

eλXi
‰

´ 1´ λE rXis

“

n
ÿ

i“1

E rφpλXiqs

ď
vλ2

2

8
ÿ

q“0

pλcqq “
vλ2

2p1´ cλq
.

The rest of the proof is very identical to the proof of Proposition 15.

7.2 Tensor inequalities and Entropies

The case of sums of independent variables is of course an important case but it does not witnesses the full diversity of
the functional of independent variables that one encounters in statistical of probabilistic problems. In this section, we are
interested in giving tools that allow to mimic the simple case of sums of independent variables through techniques that
we call tensorisation. A tensorization equality of inequality is a result that links the multidimensional case to the one
dimensional case. Doing that, one hopes to deduce the concentration of a functional of n independent random variables
from the dependency of the functional to each of the variables taken separately. We begin with the simplest tensorization
inequality, the so-called Efron-Stein inequality.

7.2.1 Efron-Stein inequality

For a sum of independent random variables Z “ X1`¨ ¨ ¨`Xn, basic calculations give Var ppqZq “
ř

iVar ppqXiq. In fact,
the only needed fact is that the random variables Xi are uncorrelated. The Efron-Stein inequality deals with the case of
a generic function of n independent random variables.

Theorem 10 (Efron-Stein). Let X1, . . . , Xn be independent random variables and let Z “ fpX1, . . . , Xnq for a real valued
function f . Assume that E rZs ă 8, then

Var pZq ď
n
ÿ

i“1

E
”

VarpiqpZq
ı

where VarpiqpZq “ Epiq
“

pZ ´ EpiqrZsq2
‰

and Epiqr¨s “ E r¨|X1, . . . , Xi´1, Xi`1, . . . , Xns.

Proof. The idea of the proof is to create a martingale p∆iqi such that Z writes as a sum of the terms ∆i. We denote by
Ei r¨s the expectation operator conditioned to the variables X1, . . . , Xi. By convention, we take E0 r¨s “ E r¨s. Then, we
de�ne

∆i “ Ei rZs ´ Ei´1 rZs ,

so that we have that

Z ´ E rZs “
n
ÿ

i“1

∆i.

The next step is to show that the random variables ∆i are uncorrelated so that the variance of Z will equals the sum of
the variances of the ∆i. First of all, @i, j P t1, . . . , nu with j ą i, Ei r∆js “ Ei rEj rZss´Ei rEj´1 rZss “ Ei rZs´Ei rZs “ 0
and then,

E r∆i∆js “ E rEi r∆i∆jss “ E r∆iEi r∆jss “ 0.

But using Fubini's theorem to obtain that the integration over Xi, . . . , Xn can be done over Xi �rst and then over
Xi`1, . . . , Xn afterwards, we have that Ei

“

EpiqrZs
‰

“ Ei´1 rZs. Then,

∆i “ Ei
”

Z ´ EpiqrZs
ı

and by Jensen's inequality, ∆2
i ď Ei

„

´

Z ´ EpiqrZs
¯2


.

So E
“

∆2
i

‰

ď E
”

`

Z ´ EpiqrZs
˘2
ı

“ E
”

Epiq
”

`

Z ´ EpiqrZs
˘2
ıı

“ E
”

VarpiqpZq
ı

which gives the result.
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7.2.2 General entropy tensorization

Efron-Stein inequality is actually a special case of a more general fact about a class of functions that de�ne a notion of
entropy. The entropies that we de�ne in this section are to be related to Shannon entropy and the related topics. We
begin with the result before giving the proper de�nition of the entropy.

Theorem 11 (Tensorization bound for entropies). Let φ : r0,`8q Ñ R be a continuous and convex function on r0,`8q.
We assume that φ is twice di�erentiable on p0,`8q and φ2 ą 0 and 1{φ2 is concave. Then, the random variable HφpZq “
E rφpZqs ´ φpE rZsq satisfy

HφpZq ď E

«

n
ÿ

i“1

H
piq
φ pZq

ff

where H
piq
φ pZq “ EpiqrφpZqs ´ φpEpiqrZsq.

Proof. We omit the proof that can be found in [2, Theorem 14.1].

The operator Hφ is called the φ-entropy operator. For the speci�c choice of φ “ x log x, we denote Ent “ Hφ. This last
quantity is called the classical entropy. It is clear that the function x ÞÑ x log x veri�es the conditions of the theorem.
It is interesting to note that the choice x Ñ x2 is also valid and HxÞÑx2 “ Var is no more than the variance operator. It
is an extremal case in a sense since taking φ “ xαplog xqβ imposes that 1 ď α ď 2.

Exercice 18. Show that φ : x ÞÑ x log x ful�lls the conditions of Theorem 11.

7.2.3 Chain rule for various notions of entropy

-Sub-addtitivity of entropy

Theorem 12 (Sub-additivity).

7.2.4 Bounded di�erence inequalities

7.3 Orlicz norms

In this section, we introduce the notion of Orlicz norm and show its consequences in terms of concentration.

De�nition 6. Let ψ : R` Ñ R` be a convex function such that ψp0q “ 0. The Orlicz norm of a variable X in Rk is
given by

}X}ψ “ inf

"

c ą 0 : E
„

ψ

ˆ

}X}

c

˙

ď 1

*

.

If the set on the right hand side is empty, we write }X}ψ “ 8.

Simple facts over convex functions show that ψ ě 0, is continuous and non-decreasing on R`. This fact show that the
functional c ÞÑ E rψ p}X}{cqs is a continuous non-increasing function so that we can say that the inf in the de�nition is
actually a min. This shows that for c “ }X}ψ, we have that E rψ p}X}{cqs “ 1. The Orlicz norm is not abusively called a
norm since we have the following.

Proposition 19. The operator } ¨ }ψ is a norm over the set of random variables quotiented by the relation R given by
X „

R
Y if and only if X “ Y almost surely.

Proof. Let X and Y be two random vectors with �nite Orlicz norms. Let c1 ą }X}ψ and c2 ą }Y }ψ.

E
„

ψ

ˆ

}X ` Y }

c1 ` c2

˙

ď E
„

ψ

ˆ

}X}

c1

c1
c1 ` c2

`
}Y }

c2

c2
c1 ` c2

˙

ď
c1

c1 ` c2
E
„

ψ

ˆ

}X}

c1

˙

`
c2

c1 ` c2
E
„

ψ

ˆ

}Y }

c2

˙

“
c1

c1 ` c2
`

c2
c1 ` c2

“ 1.

Since this is true for any c1 ą }X}ψ and c2 ą }Y }ψ, this shows that }X ` Y }ψ ď }X}ψ ` }Y }ψ. From the same kind of
calculations, one can show that }λX}ψ “ |λ|}X}ψ. Now assume that }X}ψ “ 0 and assume that X “ 0 a.s. is false. Then
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one can �nd δ ą 0 such that p “ P p}X} ě δq ą 0. Since }X}ψ “ 0, we have that for any c ą 0 that E rψp}X}{cqs ď 1.
Then

E
„

ψ

ˆ

}X}

c

˙

“

ż 8

0

P
`

}X} ě cψ´1ptq
˘

dt ď 1.

But since ψ´1 is non-decreasing, when one takes cψ´1ptq ď δ, we see that P
`

}X} ě cψ´1ptq
˘

ě p which implies that the
above integral is in�nite, absurd. Then X “ 0 a.s. and so X „

R
0 which concludes the proof.

Orlicz norms ψp The important examples are the power functions and the exponential type functions. If ψpxq “ xp,

then }X}ψ “ }X}p. When φpxq “ ex
2

´ 1, for any c ě }X}ψ, we have that

E
”

e
X2

c2

ı

ď 2 (7.3)

and then by Proposition 14, the random variable X{c is sub-Gaussian. The value }X}ψ is then the smallest c such that
(7.3) holds. Finally, we denote by ψppxq “ ex

p

´ 1 and by } ¨ }ψp the corresponding Orlicz norm. It is immediate to see
that for any random variable X,

}X}p ď }X}ψp (7.4)

since we have the inequalities ψppxq ě xp for any p ě 1.

Where the Orlicz norms for ψpxq “ xp control the existence of moments of order p, the Orlicz norms ψp control the
exponential concentration of the random variables. The precise statement is as follows.

Proposition 20. Let X be a random variable and let p P r1,`8q. The following facts are equivalents

1. }X}ψp ă 8.

2. There exist C,K ą 0 such that

P p}X} ą tq ď Ke´Ct
p

@t ą 0.

If 1. occurs then 2. is veri�ed with C “ }X}´pψp and K “ 2. If 2. occurs then }X}ψp ď pp1`Kq{Cq
1{p.

Proof. Assume that 1. holds. Then

P p}X} ą tq ď P
ˆ

ψp

ˆ

}X}

}X}ψp

˙

ě ψp

ˆ

t

}X}ψp

˙˙

ď 1^
1

ψp

´

t
}X}ψp

¯

ď 2 exp

˜

´
tp

}X}pψp

¸

,

where we used that @u ą 0, it holds that 1^ peu ´ 1q´1 ď 2e´u. Now it 2. holds,

E
”

e}X}
p
{cp ´ 1

ı

“ E

«

ż }X}p

0

es{c
p

cp
ds

ff

“

ż `8

0

P
´

}X} ą s1{p
¯ es{c

p

cp
ds

ď

ż `8

0

Ke´Cs
es{c

p

cp
ds

“
K

cp
1

C ´ 1{cp
.

Then, when c ě pp1`Kq{Cq1{p,
K

cpC ´ 1
ď

K

pp1`Kq{CqC ´ 1
“ 1,

and so }X}ψp ď c which gives the result.
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Proposition 21. Let ψ : R` Ñ R` be a convex function such that ψp0q “ 0 and there exists c ą 0 such that

lim sup
x,yÑ8

ψpxqψpyq

ψpcxyq
.

Then, for X1, . . . , XN real random variables, it holds that

} max
1ďiďN

|Xi|}ψ ď Kψ´1pNq max
1ďiďN

}Xi}ψ.

where K “ Kpψq is a constant only depending on ψ.

Proof. We �rst assume that ψp1q ď 1{2 and that for all x, y ě 1, ψpxqψpyq ď ψpcxyq. In particular for any x ě y ě 1,
ψpx{yq ď ψpcxq{ψpyq. Now, let y ě 1 and u ą 0 so it holds that

max
1ďiďN

ψ

ˆ

|Xi|

uy

˙

ď max
1ďiďN

„

ψpc|Xi|{uq

ψpyq
1 |Xi|

uy ě1
` ψ

ˆ

|Xi|

uy

˙

1 |Xi|
uy ă1



ď

N
ÿ

i“1

ψpc|Xi|{uq

ψpyq
` ψp1q.

So taking, u “ cmax1ďiďN }Xi}ψ and y “ ψ´1p2Nq, one obtains

E
„

ψ

ˆ

max1ďiďN |Xi|

uy

˙

ď
N

ψpyq
`

1

2
ď 1.

This shows that }max1ďiďN |Xi|}ψ ď cψ´1p2Nqmax1ďiďN }Xi}ψ, but since ψ is convex, the generalized inverse ψ´1 is
concave and ψ´1p0q “ 0, then ψ´1p2Nq ď 2ψ´1pNq and we get the result in this special case with K “ 2c. Going back
to the general case, under the conditions of the theorem on ψ, one can always �nd 0 ă σ ď 1 and τ ą 0 such that
φpxq “ σψpτxq,

@x, y ě 1, φpxqφpyq ď φpcxyq and φp1q ď
1

2
.

Then the same concavity fact gives that @u ą 0, φ´1puq ď ψ´1puq{στ which is equivalent to saying that @u ą 0,
ψpuστq ď φpuq. Then for any c ą }X}φ, we have that

E
„

ψ

ˆ

|X|στ

c

˙

ď E
„

φ

ˆ

|X|

c

˙

ď 1

which imply that }X}ψ ď }X}φ{στ . But, for all u ą 0,

E
„

φ

ˆ

|X|

τu

˙

“ E
„

σψ

ˆ

|X|

u

˙

ď E
„

ψ

ˆ

|X|

u

˙

,

which shows that }X}φ{τ ď }X}ψ. Using these two inequalities, we have that

›

› max
1ďiďN

|Xi|
›

›

ψ
ď

1

στ

›

› max
1ďiďN

|Xi|
›

›

φ
ď

2c

στ
φ´1pNq max

1ďiďN
}Xi}φ ď

2cτ

pστq2
ψ´1pNq max

1ďiďN
}Xi}ψ.

Then Proposition 21 holds with K “ 2c
σ2τ which depends only on ψ.

Exercice 19. Show that for any convex function ψ satisfying the hypothesis of Proposition 21, one can �nd φ, σ and τ
such that φpxq “ σψpτxq,

@x, y ě 1, φpxqφpyq ď φpcxyq and φp1q ď
1

2
.

Exercice 20. Show that ψp satisfy the hypothesis of Proposition 21 with c “ 1, τ “ 1 y σ “ 1{p2pe´ 1qq. Deduce that in
that case, Proposition 21 holds with K “ 8pe´ 1q2 ď 24.

The sub-Gaussian case (ψ2) When one choose ψ “ ψ2 and if the random variables X1, . . . , XN are sub-Gaussian
Gpνq, the result gives is that

} max
1ďiďN

|Xi|}ψ2
ď K

a

logpN ` 1q max
1ďiďN

}Xi}ψ2
ď K

a

2ν logpN ` 1q.

The bound on the right hand side is exactly of the same form as the result of Proposition 16. As a consequence, when the
random variables Xi are sub-Gaussian, both the expected value of the maximum and the Orlicz norm are controled by a
bound propostional to

?
ν logN . By a trivial manipulations, one �nally have that there exist positive constants K and C

P
ˆ

max
1ďiďN

|Xi| ą t

˙

ď Ke´C
t2

ν logN . (7.5)
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Sub-optimality As good as (7.5) seems, the bound is actually not optimal. The Orlicz norm does not takes into account
the possible bias that the maximum introduces. Indeed, if X1, . . . , XN are sub-Gaussian random variables of constant ν,
one can show that

P
ˆ

max
1ďiďN

|Xi| ą t

˙

ď 2Ne´
t2

2ν “ 2e´
t2

2ν`logpNq. (7.6)

The term logpNq is actually more a bias term in this last inequality than a multiplicative term as in (7.5). The bound
(7.5) is the best bound that one can obtain with no bias term inside the exponential. In the sequel we will use (7.5)
or (7.6) depending on the purpose one is willing to achieve. It is however wrong to think that the bias and the tail of
the maximum are of the same order in the case of Gaussian random variables. Indeed the tail behavior is actually not
depending on the number N in the maximum and is only dependent on the supremum of the variances.

Proposition 22. Let X “ pX1, . . . , XN q be centered Gaussian vector with σ2 ě maxE
“

X2
i

‰

, then for any t ą 0 we have

P
ˆ

ˇ

ˇ max
1ďiďN

Xi ´ E
„

max
1ďiďN

Xi



ˇ

ˇ ě t

˙

ď 2 exp

ˆ

´
u2

2σ2

˙

Proof. Let Γ be the covariance matrix of the Gaussian vector X “ pX1, . . . , XN q and let Y “ pY1, . . . , YN q be a Gaussian
vector of i.i.d. standard Gaussian variables. Since Γ is a positive semide�nite matrix, one can de�ne its square root matrix?

Γ. By construction, the vector X and the vector
?

ΓY have the same distribution. Let fpY q “ maxi“1,...,N p
?

ΓY qi. It
remains to prove the concentration bound on the function f . But for any two vectors u, v P RN , and i P t1, . . . , Nu we
have

|p
?

Γuqi ´ p
?

Γvqi| “
ˇ

ˇ

ˇ

N
ÿ

j“1

p
?

Γqi,jpuj ´ vjq
ˇ

ˇ

ˇ
ď

˜

N
ÿ

j“1

p
?

Γq2i,j

¸1{2

}u´ v}2 “ Γ
1{2
i,i }u´ v}2 “

a

Var pXiq}u´ v}2,

but then
|fpuq ´ fpvq| ď max

1ďiďN
|p
?

Γuqi ´ p
?

Γvqi| ď σ}u´ v}2.

Therefore, the function f is Lipschitz of constant σ and Theorem 16 applies.

7.3.1 Gaussian concentration inequality

This section shows one important result over Lipschitz functions of independent Gaussian variables. The main theorem
rely on the approximation of a Gaussian random variable by a sum of Rademacher random variables. This approximation
will allow us to prove a logarithmic Sobolev inequality inherited from the speci�c behavior of functions on the binary
hypercube. This subject is vast and has given a lot of interesting consequences for concentration and isoperimetric
problems. The set t´1, 1un is called the binary hypercube of dimension n. A Rademacher random variable is a
random variable X on t´1, 1u such that P pX “ ´1q “ P pX “ 1q “ 1{2. For a function f on the hypercube, the discrete
derivative in the i-th coordinate is given by

∇ifpxq “
fpxq ´ fpxpiqq

2

where xpiq “ px1, . . . , xi´1,´xi, xi`1, . . . , xnq and the discrete gradient is the vector ∇fpxq “ p∇1fpxq, . . . ,∇nfpxqq. A
logarithmic Sobolev inequality is a result that bounds the entropy of a random vector with its variance. More precisely,
we have the following theorem.

Theorem 13 (Logarithmic Sobolev on the hypercube). Let f : t´1, 1un Ñ R and let X P t´1, 1un be a vector of i.i.d.
Rademacher random variables. Then,

Entpf2pXqq ď 2E
“

}∇fpXq}2
‰

.

Note that if one applies the Efron-Stein inequality in this context, one obtains Var pfpXqq ď E
“

}∇fpXq}2
‰

. But if f is a
non-negative function, Var pfpXqq ď Entpf2pXqq which shows that Theorem 13 is stronger than Theorem 10.

Exercice 21. Let φppZq “ pE
“

Z2
‰

´pE rZpsq2{pq{p1{p´ 1{2q for p P r1, 2q. Show that for a non-negative random variable
Z, the function p ÞÑ φppZq is non-decreasing. Calculate φ1pZq and limpÑ2 φppZq and deduce that Var pZq ď EntpZ2q.

Proof of Theorem 13. Theorem 12 for the random variable f2pXq gives

Entpf2pXqq ď E

«

n
ÿ

i“1

Entpiqpf2pXqq

ff
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where Entpiq holds for the entropy with respect to the measure conditioned on Xpiq “ pX1, . . . , Xi´1, Xi`1, . . . , Xnq. In
the following, we show that

Entpiqpf2pXqq ď 2Epiqrp∇ifpXqq2s

which is a one dimensional problem. Then it is enough to show that for a function f : t´1, 1u Ñ R,

Entpf2pXqq ď
1

2
E
“

pfp1q ´ fp´1qq2
‰

.

Then denoting a “ fp1q and b “ fp´1q, the last inequality rewrites

a2

2
logpa2q `

b2

2
logpb2q ´

a2 ` b2

2
log

´a2 ` b2

2

¯

ď
pa´ bq2

2
.

We are now reduced to prove an elementary inequality for all a, b P R. First of all, we can assume that 0 ď b ď a by
symmetry and since p|a| ´ |b|q2 ď pa´ bq2. Now �x b ě 0 and let

hpxq “
x2

2
logpx2q `

b2

2
logpb2q ´

x2 ` b2

2
log

´x2 ` b2

2

¯

´
px´ bq2

2

from which we see that h1pbq “ 0 and h2pxq ď 0. The function h is then concave with derivative 0 in b, then h is
non-positive on the interval rb,`8q which proves the inequality.

Lemma 9. Assume that for a random variable Z, there exists a constant ν ą 0 such that we have @λ ą 0,

EntpeλZq ď
λ2ν

2
E
“

eλZ
‰

then Z is sub-Gaussian Gpνq and so, for example, P p|Z ´ E rZs | ě tq ď 2e´t
2
{2ν , for all t ě 0.

Proof. Let F pλq “ E
“

eλZ
‰

then F 1pλq “ E
“

ZeλZ
‰

. The condition of the theorem rewrites

λF 1pλq ´ F pλq logF pλq ď
λ2ν

2
F pλq

or again
ˆ

logF pλq

λ

˙1

ď
ν

2
.

By elementary integration on the interval p0, λs,

logF pλq

λ
´
F 1p0q

F p0q
“

logF pλq

λ
´ E rZs ď

νλ

2

which �nally gives logE
“

eλpZ´ErZsq‰ ď λ2ν{2 and then Z ´ E rZs is sub-Gaussian of constant ν.

A direct consequence of the previous result is the following concentration inequality.

Theorem 14. Let X “ pX1, . . . , Xnq be i.i.d. random variables of Rademacher and let f : t´1, 1u Ñ R be a real valued
function such that there exists a constant σ ą 0 such that }∇fpxq} ď σ for all x P t´1, 1un. Then fpXq is a sub-Gaussian
random variable of constant 2σ2 so that for all t ě 0,

P p|fpXq ´ E rfpXqs | ě tq ď 2e´
t2

4σ2 .

Proof. Theorem 13 with the function g “ eλf{2 gives EntpeλfpXqq ď 2E
“

p∇eλfpXq{2q2
‰

. But since for any a, b P R such
that a ě b,

pea ´ ebq ď
pa´ bq

2
ea,

we have that

E
”

p∇ieλfpXq{2q2
ı

“ 2E
”

p∇ieλfpXq{2q2`
ı

ď
λ2

2
E
”

p∇ifpXqq2`eλfpXq
ı

ď
λ2

2
E
”

p∇ifpXqq2eλfpXq
ı

which implies that EntpeλfpXqq ď λ2σ2E
“

eλfpXq
‰

. We �nish by using Lemma 9 for ν “ 2σ2.
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Theorem 13 can be used to prove the same kind of result for vectors of independent Gaussian random variables. This is
the subject of the next theorem.

Theorem 15. Let X be a centered Gaussian vector in Rn of covariance matrix In and let f : Rn Ñ R be a function of
C1pRnq. Then

Entpf2pXqq ď 2E
“

}∇fpXq}2
‰

.

Proof. By the sub-additivity of entropy of Theorem 12, it is enough to prove the theorem in dimension 1 and show that

Entpiqpf2pXqq ď 2EpiqrBifpXq2s.

So, let f : R Ñ R continuously di�erentiable. The idea is to use that if X „ N p0, 1q then for a sequence pεiqi of
Rademacher random variables,

Xn :“
1
?
n

n
ÿ

i“1

εi
pdq
ÝÑ X

So by the continuous transformation property (of Theorem 1) we have that

Ent
`

f2 pXnq
˘

ÝÑ
nÑ`8

Entpf2pXqq.

But

Ent
`

f2 pXnq
˘

ď 2E

»

—

–

n
ÿ

j“1

¨

˝

f pXnq ´ f
´

Xn ´
2εj?
n

¯

2

˛

‚

2
fi

ffi

fl

“ 2E

»

—

–

1

n

n
ÿ

j“1

¨

˝

f pXnq ´ f
´

Xn ´
2εj?
n

¯

2εj{
?
n

˛

‚

2
fi

ffi

fl

ÝÑ
nÑ`8

2E
“

f 1pXq2
‰

since f is C1pRq.

The main consequence of Theorem 15 is a concentration theorem for Lipschitz functions of independent random variables.

Theorem 16 (Tsirelson-Ibragimov-Sudakov). Let pX1, . . . , Xnq be independent Gaussian random variables. Let f : Rn Ñ
R be a Lipschitz function of constant L. Then the random variable Z “ fpX1, . . . , Xnq is sub-Gaussian of constant L2

that is @λ P R,
E
”

eλpZ´ErZsq
ı

ď e
λ2L2

2 .

In particular, for any t ą 0,

P pZ ´ E rZs ě tq ď e´
t2

2L2 .

Proof. We �rst assume that f is continuously di�erentiable and }∇f}8 ď L. We can assume without loss of generality
that Z is centered E rZs “ 0. We apply Theorem 15 with the function eλf{2, then

Entpeλf q ď 2E
”

}∇eλf{2}2
ı

“
λ2

2
E
“

eλf }∇f}2
‰

ď
λ2L2

2
E
“

eλf
‰

.

Finally using Lemma 9 we get the result.
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Chapter 8

Convergence of empirical processes

8.1 Introduction

The simple convergences given by LLN and CLT,

Xn
a.s.
ÝÑ E rXs or

?
npXn ´ E rXsq pdqÝÑ N

`

0, σ2
˘

gives that for any �xed function f in a set of functions F ,

1

n

n
ÿ

i“1

fpXiq
a.s.
ÝÑ E rfpXqs and

1
?
n

n
ÿ

i“1

pfpXiq ´ E rfpXqsq pdqÝÑ N
`

0, σ2
f

˘

.

Many statistical contexts need to deal with the case when the function f is actually random and possibly dependent on the
values of the random variables X1, . . . , Xn. This case comes naturally when one needs a control of the empirical quantity
1
n

řn
i“1 f̂pXiq for an estimator f̂ drawn on the sample.

Measurability of the sup In the sequel, we will be interested in the behavior (in a large sense) of processes of the form
supfPF fpXq. Assume that one wants to give a precise meaning to E

“

supfPF fpXq
‰

. The attentive reader noticed that
this may pose a measurability problem. Indeed, in general, it is not possible to prove that supfPF fpXq is measurable.
Nevertheless, there are, at least, two strategies to overcome this issue. First, one can de�ne

E˚
«

sup
fPF

fpXq

ff

“ sup

#

E

«

sup
fPG

fpXq

ff

: with G �nite

+

. (8.1)

Hence, one can always assume the suprema taken over �nite sets (which de�ne measurable objects). Secondly, one can
de�ne an improper notion of espectation E˚ using the outer measure/outer integrals concept. For more information on
that subject, one can relate the following notion with (17.2). For a map Z : Ω Ñ R, we de�ne

E˚rZs “ inftE rU s : with U ě Z and U : Ω Ñ r´8,`8s is measurableu. (8.2)

Then one can de�ne E˚
“

supfPF fpXq
‰

in this manner. Of course, if the set F is �nite the two de�nition coincide with the
regular notion of expectation on supfPF fpXq that is now clearly measurable. We do not specify which of these notions are
of interest for us since, the conditions that we assume in the forthcoming theorems impose continuity a.s. of the process
and separability of F . These two conditions are su�cient to have that the supremum is actually measurable. In particular,
it reduces to the study of a continuous random process de�ned on a Polish space (even though the completeness is not
present).

8.2 Examples of empirical processes

8.2.1 Education vs Employment

In our model a population of individuals X1 “ pY1, Z1q, . . . , Xn “ pYn, Znq is such that Yi P t0, 1u represents the fact for
individual i to be employed (value 1) and Zi P R represents the level of education. We are interested in understanding
the relation of dependence between education and employment summarized in the following function,

F0pzq “ P pY “ 1|Z “ zq .

49
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A natural hypothesis to impose on the function F0 is to be non-decreasing in z as (normally) a higher level of education
gives more access to employment. Let

Λ1 “ tF : RÑ r0, 1s, F is non decreasingu

a set of functions that satisfy the same conditions than F0. A natural estimator for F0 is the maximum likelihood estimator
de�ned as

F̂n “ argmaxfPΛ1

#

n
ÿ

i“1

`

Yi logF pZiq ` p1´ Yiq logp1´ F pZiqq
˘

+

Denoting by Q the distribution of the random variable Z. A measure of the quality of this estimator can be given by

}F̂n ´ F0}Q “

ˆ
ż

pF̂npzq ´ F0pzqq
2dQpzq

˙1{2

.

The tools developed later in this chapter can be applied to get }F̂n ´ F0}Q “ OP pn
´1{3q.

One may choose to impose some extra assumptions on the objective function by de�ning

Λ2 “

"

F : RÑ r0, 1s, 0 ď
dF

dz
pzq ďM, F is concave.

*

In this context, it will be possible to show later in this chapter that }F̂n ´ F0}Q “ OP pn
´2{5q. Finally, if one is interested

in a parametric case and de�nes

Λ3 “

"

F : RÑ r0, 1s, F pzq “ F0pθzq, θ P R and F0pxq “
ex

1` ex

*

.

In this case, }F̂n ´ F0}Q ď C|θ̂n ´ θ0| “ OP pn
´1{2q.

8.2.2 Theoretical convergence of maximum likelihood estimators for densities

Assume that we are provided with a set of densities (with respect to a given measure µ)

tpθ : θ P Θu

to which belongs a density pθ0 . The statistician is provided with a sample X1, . . . , Xn of common distribution pθ0 . A
suitable notion of distance for this problem is the so-called Hellinger distance h given by

hpp, qq “

ˆ

1

2

ż

pp1{2 ´ q1{2q2dµ

˙1{2

.

This distance is controlled by the Kullback-Leibler divergence (which is not properly a distance) K that is de�ned by

Kpp, qq “

ż

log

ˆ

ppxq

qpxq

˙

ppxqdµpxq.

Note that the integrand is continuous (and takes the value 0) on the frontier of the support of p, hence no problems of
integration occur in this case. Obviously, the Kpp, qq “ `8 if q is not absolutely continuous with respect to p.

Proposition 23. We have that Kpp, qq ě 0 and that h2pp, qq ď 1
2Kpp, qq.

Proof. At the cost of reducing the set of integration to the support of p, we can assume that ppxq ą 0 and qpxq ą 0. A
simple function study shows that @v ą 0, we have

logpvq ď v ´ 1 and
1

2
logpvq ď v1{2 ´ 1

Hence,

Kpp, qq “

ż

log

ˆ

p

q

˙

pdµ ě

ż
ˆ

q

p
´ 1

˙

pdµ “

ż

qdµ´

ż

pdµ “ 1´ 1 “ 0

1

2
Kpp, qq “

ż

1

2
log

ˆ

p

q

˙

pdµ ě

ż
ˆ

1´
q1{2

p1{2

˙

pdµ “ 1´

ż

p1{2q1{2dµ “
1

2

ˆ
ż

pdµ`

ż

qdµ´

ż

2p1{2q1{2dµ

˙

“ h2pp, qq
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The maximum likelihood estimator is given by

pθ̂n “ argmin
θPΘ

n
ÿ

i“1

log

ˆ

pθ0pXiq

pθpXiq

˙

where the right hand side can be interpreted as the empirical version of the Kullback-Leibler divergence. By de�nition of
the estimator, we have

0 ě
1

n

n
ÿ

i“1

log

˜

pθ0pXiq

pθ̂npXiq

¸

“
1

n

n
ÿ

i“1

log

˜

pθ0pXiq

pθ̂npXiq

¸

´Kppθ0 , pθ̂nq `Kppθ0 , pθ̂nq.

Then

Kppθ0 , pθ̂nq ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

log

˜

pθ0pXiq

pθ̂npXiq

¸

´Kppθ0 , pθ̂nq

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
θPΘ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

log

ˆ

pθ0pXiq

pθpXiq

˙

´Kppθ0 , pθq

ˇ

ˇ

ˇ

ˇ

ˇ

.

But one already know that for any �xed θ P Θ,

1

n

n
ÿ

i“1

log

ˆ

pθ0pXiq

pθpXiq

˙

´Kppθ0 , pθq “ OP pn
´1{2q.

Finally, one can see that if one is able to derive a uniform type of central limit theorem, one will be able to give the order
of magnitude of the convergence of Kppθ0 , pθ̂nq towards 0.

8.3 Metric entropy, covering and ε-nets

8.3.1 Covering numbers

We begin with the de�nition of the metric entropy in a general pseudo-metric space D. The space is endowed with a
pseudo-distance d (i.e the only axiom of a distance that is not veri�ed by d is dpx, yq “ 0 ùñ x “ y). In the following,
we denote by Bdpx, εq the open ball centered at x and of radius ε ą 0.

De�nition 7. Let pD, dq be a pseudo metric space.

• A covering of radius ε of a set A in the metric space D is a set C de�ned as a �nite union of balls of the form
Bdpx, εq such that C contains A. The elements x P D do not necessarily belong to A.

• The set of coverings of A is denoted CovpAq.

• For a covering C of A, we denote by CenterspCq the set of the centers x of the balls used in the covering C.

We de�ne the covering number N pε,A, dq as the minimal number of balls needed to cover A:

N pε,A, dq “ min
CPCovpAq

|CenterspCq|.

Note that the min is a priori an inf but the number of elements in CenterspCq is an integer and since the in�mum is taken
over a subset of natural numbers, this is a minimum. The quantity Hpε,A, dq “ logN pε,A, dq is the ε-entropy of the set
A. Finally, we say that the set A is totally bounded is the ε-entropy Hpε,A, dq is �nite for every ε ą 0.

Since we are interested in sets that are totally bounded, it is not important to assume that the centers belong to A or
not. Indeed, if a covering C “ YiBdpxi, εq exists, it is always possible to �nd another covering YiBdpx

1
i, 2εq where x

1
i P A.

In the literature, a covering such that the xi belong to A is called an internal covering and is called an external covering
in the opposite case.

Entropy of a set of functions When the metric space is LppRq, we denote by Hpε,F , Qq :“ Hpε,F , } ¨ }p,Qq the
entropy of the set F with respect to the metric

dpf, gq “ }f ´ g}p,Q “

ˆ
ż

R
|f ´ g|pdQ

˙1{p

.

Of course, as in De�nition 7, the set F is included in the ambient metric space which is LppQq in this case. We denote by
H8pε,Fq the ε-entropy for the in�nite norm } ¨ }8.
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De�nition 8. We denote by Np,Bpε,F , Qq the minimal number N such that there exists couples pfLi , f
R
i q

N
i“1 of elements

of LppQq such that

• For all i, }fLi ´ f
R
i }p,Q ď ε.

• For all f P F , there exists i P t1, . . . , Nu such that fLi ď f ď fRi .

The value of Hp,Bpε,F , Qq “ logNp,Bpε,F , Qq is called ε-entropy with bracketting of F .

One has to note that, a priori we only impose that the bounding functions belong to LppQq and not the entire set F ,
but when the entropy with bracketing is �nite, every function f P F is at Lp-distance bounded by ε from an element fLi
which belongs to LppQq. Hence this impose that F Ă LppQq.

Exercice 22. If D “ R and A “ tx P R : |x| ď ku and d “ | ¨ | show that N pε,A, dq ď rk{εs.

One has the following ordering between the di�erent entropies.

Proposition 24. For all 1 ď p ă 8 and @ε ą 0,

Hppε,F , Qq ď Hp,Bpε,F , Qq.

If Q is a measure of probability,

Hp,Bpε,F , Qq ď H8

´ε

2
,F

¯

If A Ă D and d, d1 are two pseudo-distances on D such that @x, y P D, dpx, yq ď d1px, yq then

Hpε,A, dq ď Hpε,A, d1q.

One could have added, in the previous Proposition, the fact that if two metric spaces pD, dq and pD1, d1q are isometric,
then there is a correspondence between the covering of D and the ones of D1. We will use this fact without proof in the
following examples.

Proof. Left as an exercice

8.3.2 ε-nets

An ε-net of a set A is a �nite family pcjqj“1,...,N of elements of A such that

• For any i ‰ j, }ci ´ cj} ě ε,

• The set tc1, . . . , cNu is maximal with respect to the inclusion order.

It is direct to see that there is a link between the covering number and the existence of an ε-net for a set A. This is
formalized in the following result.

Proposition 25. A ε-net pciqi“1,...,N of a set A forms the centers set CenterspCq of a covering C of A.

Proof. Let pciqj“1,...,N be a ε-net of A. The collection of the balls of radius ε centered at the cj form a covering. Indeed,
if it was not the case, we would be able to �nd a point x P A that do not belong to one of the balls Bdpcj , εq. That would
mean that tc1, . . . , cNu Y txu is also an ε-net of A which contradicts the maximality of the initial ε-net tc1, . . . , cNu.

Lemma 10. If A “ Bdp0, Rq Ă Rd endowed with the Euclidean distance d, then the covering number is such that

N pε,A, dq ď
ˆ

2R` ε

ε

˙d

.

Proof. Let pciqj“1,...,N be a ε-net of the ball BdpRq. By Proposition 25, it also forms a covering of BdpRq then we have
N pε,A, dq ď N . It is also true that

N
ď

j“1

Bd

´

cj ,
ε

2

¯

Ă Bd

´

R`
ε

2

¯

.

The intersection of two balls Bd
`

cj ,
ε
2

˘

is empty or reduced to a singleton. Hence one can compare the two Lebesgues
measures of the previous sets to get

N
ÿ

j“1

µd

´ε

2

¯d

ď µd

´

R`
ε

2

¯d

where µd “ 2πd{2d´1Γpd{2q´1 is the volume of the unit ball in Rd. Rearranging the last inequality gives the result.
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8.3.3 Examples

Example 5. Let φ1, . . . , φd P L2pQq �xed functions of unit norm and let

F “

#

f “
d
ÿ

k“1

θkφk : θ “ pθ1, . . . , θdq P Rd, }f}2,Q ď R

+

.

Then one has that for all ε ą 0,

H2pε,F , Qq ď dQ log

ˆ

2R` ε

ε

˙

where dQ is the rank of the matrix ΣQ “
ş

φφT dQ with the notation φ “ pφ1, . . . , φdq. Indeed, one can see that there is a
bijection that preserves the scalar product between F and the set of Rd given by

#

u “
d
ÿ

k“1

θkek : θ “ pθ1, . . . , θdq P Rd, }u} ď R

+

where the vectors ek are such that @i, j, the scalar product is given by ei ¨ ej “
ş

φiφjdQ. Of course, if pekqk forms a
orthonormal basis then the result holds with dQ “ d by the use of Lemma 10. Otherwise, one can use the orthonormalization
of Gram-Schmith to form an orthonormal basis e11, . . . , e

1
dQ

where dQ is given by the rank of the Gram matrix G “ pei ¨ejqi,j.
But since G “ ΣQ, one has the result.

Example 6. Let
F “ tf : X Ñ r0, 1s non-decreasingu

where X is a �nite subset of R. Then one has H8pε,Fq ď ε´1 logpn ` ε´1q where n “ |X|. To see that, de�ne
x1 ď . . . ,ď xn the elements of X. We de�ne, for all f P F ,

Mf
i “

Z

fpxiq

ε

^

, @i “ 1, . . . , n.

Let f̃pxiq “ εMf
i , then }f ´ f̃}8 ď ε. Also, the set of discretized functions F̃ “ tf̃ : f P Fu is �nite since 1 ď Mf

1 ď

¨ ¨ ¨ ďMf
n ď tε´1u are natural numbers. Exact computations give that

|F̃ | “
ˆ

n` tε´1u

tε´1u

˙

ď pn` tε´1uqtε
´1

u.

Since F̃ induces a covering of F , we get an upper bound of the covering number that gives the result.

Remark 2. A famous result by Birman and Solomjak �nally gives that H1,Bpε,F , Qq ď Aε´1 (see Chapter 11)

Example 7. Let
F “

 

f : r0, 1s Ñ r0, 1s such that |f 1| ď 1
(

then there exists a constant A ą 0 such that

H8pε,Fq ď
A

ε
, @ε ą 0.

To justify this, let 0 “ a0 ă, . . . , aN “ 1 such that ak “ kε for k “ 0, . . . , N ´ 1. Let Bk “ pak´1, aks and

f̃ “
N
ÿ

k“1

ε

Z

fpakq

ε

^

1Bk .

We have that }f ´ f̃} ď 2ε, by construction and the values of f̃ are the εM where M is an integer. Moreover,

|f̃pakq ´ f̃pak´1q| ď |f̃pakq ´ fpakq| ` |fpakq ´ fpak´1q| ` |fpak´1q ´ f̃pak´1q| ď 3ε

To de�ne the value of f̃pa0q, we have tε´1u ` 1 possibilities. Then for the choice of f̃pa1q, the previous inequality only

leave 7 possibilities. This is also 7 possibilities for f̃pa2q and so on. Finally, there is no more than ptε´1u` 1q7tε´1
u such

functions f̃ . Then

H8p2ε,Fq ď
1

ε
log 7` logp

1

ε
` 1q ď

A

ε
,

for A a universal constant.
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8.4 A �rst result under entropy with bracketing

In the following, we will say that an empirical process p 1
n

řn
i“1 fpXiqqfPF is P -Glivenko-Cantelli when

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

fpXiq ´ E rf s

ˇ

ˇ

ˇ

ˇ

ˇ

a.s.
ÝÑ 0.

This notion corresponds to a LLN that holds uniformly on the entire class F . We now expose the simplest theorem using
the �niteness of the entropy with bracketing for proving the uniform �rst order convergence of the empirical process. The
following result is inspired by the proof of the classical Glivenko-Cantelli Theorem 5.

Theorem 17. Let F be a class of functions. We assume that H1,Bpε,F , P q ă 8, for all ε ą 0, then F is a class
P -Glivenko-Cantelli.

Proof. Let ε ą 0. By assumption, N :“ N pε,F , P q ă 8 and then there exists a �nite class tfLi , f
R
i u

N
i“1 such that

}fLi ´ f
R
i } ď ε and @f P F , Di such that fLi ď f ď fRi . Then

ż

fdpPn ´ P q “

ż

fdPn ´

ż

fdP ď

ż

fRi dPn ´

ż

fdP

“

ż

fRi dpPn ´ P q `

ż

pfRi ´ fqdP

ď

ż

fRi dpPn ´ P q ` ε.

Similarly, we have that
ş

fdpPn ´ P q ě
ş

fLi dpPn ´ P q ´ ε. Since tfLi , f
R
i u

N
i“1 is a �nite set, a direct use of the classical

LLN gives that

max
i“1,...,N

ˇ

ˇ

ˇ

ˇ

ż

fLi dpPn ´ P q

ˇ

ˇ

ˇ

ˇ

a.s.
ÝÑ 0

max
i“1,...,N

ˇ

ˇ

ˇ

ˇ

ż

fRi dpPn ´ P q

ˇ

ˇ

ˇ

ˇ

a.s.
ÝÑ 0.

Then, with probability 1, for n su�ciently large, one has that

sup
fPF

ˇ

ˇ

ˇ

ˇ

ż

fdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

ď 2ε

and the result is proved.

In fact, the �niteness of the entropy with bracketing has a second consequence that we expose in the following lemma that
deals with the enveloppe of the class F . The function

F “ sup
fPF

|f |

is called enveloppe of the class F .

Lemma 11. Assume that H1,Bpε,F , P q ă 8 for all ε ą 0. Then F P L1pP q.

Proof. For every ε ą 0, H1,Bpε,F , P q is �nite so is H1pε,F , P q by Proposition 24. As a consequence, pF , } ¨ }1,P q is totally
bounded and then F is pre-compact. It is also immediate to see that every function f P F belongs to L1pP q since it is at
L1-distance bounded by ε of a function in L1pP q. Since the space LppQq is complete we have that F is also complete. But
since a pre-compact set which is also complete is compact (this is actually an equivalence), we have that F is compact.
Moreover, f ÞÑ }f}1,P is a continuous function, it is a bounded function (that also attains its bounds). Then, there exists
R ą 0 such that

sup
fPF

}f}1,P ď R.

Now, �x ε ą 0, so that for any function f P F , we have that fLi ď f ď fRi and then

|f | ď |fLi | ` |f
R
i ´ f

L
i | ď

N
ÿ

i“1

|fLi | ` |f
R
i ´ f

L
i |
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where N “ exppH1,Bpε,F , P qq. Then

}F }1,P ď
N
ÿ

i“1

}fLi }1,P ` }f
R
i ´ f

L
i }1,P ď NpR` 2εq.

This insures that F P L1pP q.

This last result gives an indication on the minimal assumptions that one would impose to have the uniform LLN. Indeed,
one has the fact that the last result is actually necessary (under the extra condition that the set F is bounded in L1pP q).
This last hypothesis is, of course, necessary since one can think of the P -Glivenko-Cantelli class of the constant functions
that do not have an integrable enveloppe. In the other theorem that we will present (Theorem 18), this necessary condition
will be assumed.

Proposition 26. If the class F is P -Glivenko-Cantelli and bounded in L1pP q, then F P L1pP q.

Proof. Since F is P -Glivenko-Cantelli, supfPF |Pnf ´ Pf |
a.s.
ÝÑ 0. But

1

n
sup
fPF

|fpXnq ´ Pf | ď sup
fPF

|Pnf ´ Pf | `

ˆ

1´
1

n

˙

sup
fPF

|Pn´1f ´ Pf |

then n´1 supfPF |fpXnq ´ Pf |
a.s.
ÝÑ 0 which implies that P

`

supfPF |fpXnq ´ Pf | ě n, i.o.
˘

“ 0. By Borel-Cantelli Lemma

42, one has that E
“

supfPF |fpXnq ´ Pf |
‰

ď
ř

n P
`

supfPF |fpXnq ´ Pf | ě n
˘

ă 8. The random variables Xi are i.i.d. so

that we actually proved that E
“

supfPF |fpXq ´ Pf |
‰

ă 8. Since F is bounded in L1pP q, we have that

E rF s ď E

«

sup
fPF

|fpXq ´ Pf |

ff

` sup
fPF

|Pf | ă `8.

8.5 A second result under empirical entropy control

The objective of this section is to prove the following theorem.

Theorem 18. If the enveloppe F of F is in L1pP q and if

1

n
H1pε,F , Pnq

P
ÝÑ 0, @ε ą 0,

then F is P -Glivenko-Cantelli.

This results is much weaker than Theorem 17 in two perspectives. First, the condition holds on a notion of entropy that
is smaller since, by Proposition 24 the H1 entropy is bounded by the entropy with bracketing H1,B . Secondly, the order of
magnitude is bigger (oP pnq against the Op1q for Theorem 17) which allows a little more freedom in the research of upper
bounds for the entropies. Nonetheless, the price to pay is to deal with an entropy that is now a random variable.

Proof. See Section [XXX]

8.5.1 Symmetrization

We will use the following lemma in the proof of Theorem 18. More results of this �avor can be found in the excellent
[4]. This kind of results link the theory of empirical processes to the theory of Rademacher chaos where another notion of
complexity for sets is de�ned. This complexity is the so called Rademacher complexity. [Develop this point]

Lemma 12. Let X1, . . . , Xn be independent random processes Xi “ pXi,sqsPT assumed centered (i.e. @i, @s, E rXi,ss “ 0).
Let ε1, . . . , εn be i.i.d. Rademacher random variables and independent from X1, . . . , Xn, then

1

2
E

«

sup
sPT

ˇ

ˇ

ˇ

n
ÿ

i“1

εiXi,s

ˇ

ˇ

ˇ

ff

ď
p2q

E

«

sup
sPT

ˇ

ˇ

ˇ

n
ÿ

i“1

Xi,s

ˇ

ˇ

ˇ

ff

ď
p1q

2E

«

sup
sPT

ˇ

ˇ

ˇ

n
ÿ

i“1

εiXi,s

ˇ

ˇ

ˇ

ff

and

E

«

sup
sPT

n
ÿ

i“1

Xi,s

ff

ď
p3q

2E

«

sup
sPT

n
ÿ

i“1

εiXi,s

ff
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Proof. We begin with the proof of p1q. Since the processes Xi are centered, it holds that

E

«

sup
sPT

ˇ

ˇ

ˇ

n
ÿ

i“1

Xi,s

ˇ

ˇ

ˇ

ff

“ E

«

sup
sPT

ˇ

ˇ

ˇ

n
ÿ

i“1

Xi,s ´ E
“

X 1i,s
‰

ˇ

ˇ

ˇ

ff

“ E

«

sup
sPT

ˇ

ˇ

ˇ
E

«

n
ÿ

i“1

Xi,s ´X
1
i,s

ˇ

ˇ

ˇ

ˇ

ˇ

X 11, . . . , X
1
n

ff

ˇ

ˇ

ˇ

ff

ď E

«

sup
sPT

ˇ

ˇ

ˇ

n
ÿ

i“1

pXi,s ´X
1
i,sq

ˇ

ˇ

ˇ

ff

(by Jensen's inequality used twice)

“ E

«

sup
sPT

ˇ

ˇ

ˇ

n
ÿ

i“1

εipXi,s ´X
1
i,sq

ˇ

ˇ

ˇ

ff

(by symmetry of Xi,s ´X
1
i,s in distribution)

ď 2E

«

sup
sPT

ˇ

ˇ

ˇ

n
ÿ

i“1

εiXi,s

ˇ

ˇ

ˇ

ff

(by triangular inequality)

where X 1i,s is an independent copy of the random variable Xi,s. The inequalities p2q and p3q can be proved in a very
similar manner.

The symmetrization that we used in Lemma 12 is a general idea that can also be used to prove that the concentration of
the empirical process is of the same order of its symmetrized version. More formally, we have the following result.

Lemma 13. Assume that for any function f P F and a δ ą 0,

P
ˆ

ˇ

ˇ

ˇ

ż

fdpPn ´ P q
ˇ

ˇ

ˇ
ą
δ

2

˙

ď
1

2
.

Then, it holds that

P

˜

sup
fPF

ˇ

ˇ

ˇ

ż

fdpPn ´ P q
ˇ

ˇ

ˇ
ą δ

¸

ď 2P

˜

sup
fPF

ˇ

ˇ

ˇ

ż

fdpPn ´ P
1
nq

ˇ

ˇ

ˇ
ą
δ

2

¸

where P 1n is the empirical measure de�ned on pX 11, . . . , X
1
nq which is a independent copy of pX1, . . . , Xnq.

Proof. Denote by X the vector pX1, . . . , Xnq and by Af “ tX : |
ş

fdpPn ´ P q| ą δu. We also de�ne A “
Ť

fPF Af . By
de�nition of A, if X P A means that there exists f˚ “ f˚X P F such that X P Af˚ . As a function dependent of X, f˚ is
then a random function in F . By independence of Pn and P 1n,

P
ˆ

Af˚ and
ˇ

ˇ

ˇ

ż

f˚dpP 1n ´ P q
ˇ

ˇ

ˇ
ď
δ

2

˙

“ EX

„

PX1

ˆ

ˇ

ˇ

ˇ

ż

f˚dpP 1n ´ P q
ˇ

ˇ

ˇ
ď
δ

2

˙

1Af˚



ą
1

2
P
`

Af˚
˘

“
1

2
P
ˆ

ˇ

ˇ

ˇ

ż

f˚dpPn ´ P q
ˇ

ˇ

ˇ
ą δ

˙

.

Using this inequality, we �nd that

P

˜

sup
fPF

ˇ

ˇ

ˇ

ż

fdpPn ´ P q
ˇ

ˇ

ˇ
ą δ

¸

“ P

˜

X P
ď

fPF
Af

¸

ď P
`

X P Af˚
˘

“ P
ˆ

ˇ

ˇ

ˇ

ż

f˚dpPn ´ P q
ˇ

ˇ

ˇ
ą δ

˙

ď 2P
ˆ

X P Af˚ and
ˇ

ˇ

ˇ

ż

f˚dpP 1n ´ P q
ˇ

ˇ

ˇ
ď
δ

2

˙

“ 2P
ˆ

ˇ

ˇ

ˇ

ż

f˚dpPn ´ P q
ˇ

ˇ

ˇ
ą δ and

ˇ

ˇ

ˇ

ż

f˚dpP 1n ´ P q
ˇ

ˇ

ˇ
ď
δ

2

˙

ď 2P
ˆ

ˇ

ˇ

ˇ

ż

f˚dpPn ´ P
1
nq

ˇ

ˇ

ˇ
ą
δ

2

˙

ď 2P

˜

sup
fPF

ˇ

ˇ

ˇ

ż

fdpPn ´ P
1
nq

ˇ

ˇ

ˇ
ą
δ

2

¸
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To get a result of the form of Lemma 12, one can apply the Rademacher random variables trick and get the following
result.

Corollary 5. Let ε1, . . . , εn be Rademacher random variables independent from the Xi. Then, under the hypothesis of
Lemma 13,

P

˜

sup
fPF

ˇ

ˇ

ˇ

ż

fdpPn ´ P q
ˇ

ˇ

ˇ
ą δ

¸

ď 4P

˜

sup
fPF

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εifpXiq

ˇ

ˇ

ˇ
ą
δ

4

¸

.

Proof. The proof used the same ideas as the proof of Lemma 12 and is left as an exercice.

[STATE A RESULT ABOUT THE LINK WITH RADEMACHER COMPLEXITY]

8.5.2 Dudley entropy integral

In this section we derive a result that is the starting point of a general theory known under the name of chaining technique.
This idea was �rst introduced by Kolmogorov [8]. The idea is to reduce a supremum over an in�nite class to a supremum
over increments of a process where each increment can only take a �nite number of values. The original idea comes from
Dudley [7] and further studied and extended by Talagrand (see [15]).

Lemma 14. Let X1, . . . , XN be sub-gaussian random variables Gpvq (i.e. @λ ą 0, E
“

eλXi
‰

ď eλ
2v{2). Then

E
„

max
i“1,...,N

Xi



ď
a

2v logN.

Proof. By Jensen's inequality, @λ ą 0,

exp

ˆ

λE
„

max
i“1,...,N

Xi

˙

ď E
„

exp

ˆ

λ max
i“1,...,N

Xi

˙

“ E
„

max
i“1,...,N

exp pλXiq



ď

N
ÿ

i“1

E rexp pλXiqs ď N exp

ˆ

λ2v

2

˙

Taking the logarithm, we get that for all λ ą 0,

E
„

max
i“1,...,N

Xi



ď
logpNq

λ
`
λv

2
.

Since the left hand side does not depend on λ, one can minimize in λ the right hand side. Hence, taking λ “
a

2 logpNq{v,
we get the result.

Theorem 19 (Dudley entropy integral). Let pT , dq be a metric space and let pXtqtPT be a process indexed by T such that,
for all t, t1 P T and all λ ą 0,

logE rexpλpXt ´Xt1qs ď
λ2d2pt, t1q

2
.

Then, for every t0 P T ,

E
„

sup
tPT

|Xt ´Xt0 |



ď 12

ż δ{2

0

a

Hpε, T , dqdε (8.3)

where δ “ suptPT dpt, t0q. In particular, for D “ diampT q,

E
„

sup
t,sPT

pXt ´Xsq



ď 24

ż D{2

0

a

Hpε, T , dqdε. (8.4)

Proof. We assume that the metric entropy is �nite for any ε ą 0 otherwise the bound is trivial. Actually, one can only
take Hpε, T , dq �nite a.s. but the following is trivially adaptable to this general case. We start by assuming that T is
�nite. For any j P N, we de�ne δj “ δ2´j . For any j P N, Nj :“ N pδj , T , dq is �nite and then there exists a �nite

covering
ŤNj
i“1Bdpxi, δjq of T . Let Tj be the �nite ensemble of the centers of that covering. For every j P N, we de�ne a

function Πj : T Ñ Tj that associated any t P T to a point in Tj such that dpt,Πjptqq ď δj . There may be more than one
possibility for Πjptq. When it is the case, one may choose any of the candidates arbitrarily. We �nally de�ne T0 “ tt0u



58 CHAPTER 8. CONVERGENCE OF EMPIRICAL PROCESSES

and Π0ptq “ t0.
Step 1: We have that,

Xt “ Xt0 `

8
ÿ

j“0

XΠj`1ptq ´XΠjptq.

Indeed, since the set T is �nite, the in�nite sum is actually �nite and for j large enough XΠjptq “ Xt.

Step 2: Then one has that

E
„

sup
tPT

|Xt ´Xt0 |



ď

8
ÿ

j“0

E
„

sup
tPT

|XΠj`1ptq ´XΠjptq|



Furthermore, |tpΠjptq,Πj`1ptqq : t P T u| ď expp2Hpδj`1, T , dqq and the triangular inequality of d gives

dpΠjptq,Πj`1ptqq ď dpΠjptq, tq ` dpt,Πj`1ptqq “ δj ` δj`1 “ 3δj`1.

Then the variables XΠj`1ptq ´XΠjptq are sub-Gaussian of constant 9δ2
j`1 so that one can use Proposition 14 to get

E
„

sup
tPT

|XΠj`1ptq ´XΠjptq|



ď

b

2ˆ 9δ2
j`1 ˆ 2Hpδj`1, T , dq “ 6δj`1

b

Hpδj`1, T , dq.

Then summing these inequalities we get

E
„

sup
tPT

|Xt ´Xt0 |



ď

8
ÿ

j“1

6δj

b

Hpδj , T , dq “ 12
8
ÿ

j“1

pδj ´ δj`1q

b

Hpδj , T , dq ď 12

ż δ{2

0

a

Hpε, T , dqdε

where, in the last step we used the classical comparison of Riemann sums and integrals on the non-increasing function
δ ÞÑ Hpδ, T , dq. As a by product of the result, we obtained that for any ε ą 0, there exists η ą 0 such that for any �nite
and thus countable subset S of T ,

E

»

– sup
s,tPS

dps,tqăη

|Xs ´Xt|

fi

fl ď ε. (8.5)

Step 3: In the general case, by the assumption on the �niteness of the integral, pT , dq is totally bounded and then separable.
Then, there exists a countable set S dense in T . Let us take X̃t “ Xt for any t P S and X̃t “ limXs where the limit is in
the L1 sense by the help of Equation (8.5). Then pX̃tqtPT is modi�cation (see De�nition 19 for a concrete de�nition) of
pXtqtPT that has a.s. continuous paths. By continuity of the paths, Equations (8.3) and (8.4) are satis�ed for the process
pX̃tqtPT where the sup is taken on the entire set T . We �nish the proof by saying that, by construction,

E˚
„

sup
tPT

|Xt ´Xt0 |



“ E
„

sup
tPT

|X̃t ´ X̃t0 |



where the left hand side expectation has to be taken as one of the generalized expectations of (8.1) or (8.2).

As a by product of the proof of Theorem 19, we get that one can construct a continuous version of the process pXtqt when
the entropy integral is �nite. In fact, Theorem 19 can be generalized for other classes of random variables and then have
as a consequence the famous Kolmogorov continuity theorem. This aspect is brie�y treated in Section [XXX].

Remark 3. It is a theorem that makes the link between a discrete and �nite case to a continuous and in�nite case. As
the vigilant reader may have noticed, the only use of the distance property is made through the triangular inequality. As a
direct consequence, the same theorem is true for spaces pT , dq where d is only a pseudo metric. Of course, the de�nition
of entropy does not change under this alternative setting.

8.5.3 Sudakov Minoration

For this section, we follow the excellent [9]. The subject of this part is to understand the speci�c case of gaussian processes
for which we show that entropic lower bounds are achievable. This complete argument is called Sudakov minoration. This
part uses intensively the ideas behind the so-called comparison theorems where Slepian's Lemmas form the key stone
of this section. We begin with a simple lower bound of the maximum of a collection of independent Gaussian random
variables.
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Proposition 27. Let N ě 6. Let X1, . . . , XN be i.i.d. standard Gaussian random variables. Then, there exists a universal
constant C ą 0 such that

E
„

max
i“1,...,N

Xi



ě C
a

logpNq

Moreover, it holds that
E rmaxi“1,...,N Xis

a

2 logpNq
ÝÑ
NÑ8

1.

Proof. Since the variables X1, . . . , Xn are centered, we see that E rmaxi“1,...,N Xis “ E rmaxi“1,...,N pXi ´X1qs where the
last inequality show that the the quantity is non-negative since maxiXi ě X1. For any δ ą 0, one has that

E
„

max
i“1,...,N

Xi ´X1



“

ż 8

0

P
ˆ

max
i“1,...,N

Xi ´X1 ą t

˙

dt ě

ż δ

0

P
ˆ

max
i“1,...,N

Xi ´X1 ą δ

˙

dt “ δr1´p1´P pX2 ´X1 ą δqqN´1s.

so that if we choose δ such that P pX2 ´X1 ą δq ě 1{pN ´ 1q, we have that

E
„

max
i“1,...,N

Xi



ě δ

„

1´ p1´
1

N ´ 1
qN´1



ě p1´ e´1qδ.

But P pX2 ´X1 ą δq “ P
´

N ą δ?
2

¯

“ 1{2´ P
´

0 ă N ă δ?
2

¯

where N is a standard Gaussian variable. But

1
?

2π

ż δ?
2

0

e´t
2
{2dt “

1
?

2π

d

ż δ?
2

0

ż δ?
2

0

e´t
2
1{2´t

2
2{2dt1dt2 ď

1
?

2π

d

ż π{2

0

ż δ

0

ρe´ρ2{2dρdθ “
1

2

b

1´ e´
δ2

2 ,

so we have that P pX2 ´X1 ą δq ě 1{2p1´
?

1´ e´δ2{2q. The condition on δ is veri�ed if one takes

1

2
p1´

a

1´ e´δ2{2q ě
1

N ´ 1

which is veri�ed for δ “
a

2 logppN ´ 1q{4q. We �nally have that

E
„

max
i“1,...,N

Xi



ě p1´ e´1q
a

2 logppN ´ 1q{4q.

Finally, one can conclude the �rst fact of the Proposition by showing that for there exists a constant C such that
p1´ e´1q

a

2 logppN ´ 1q{4q ě C
?

logN . The constant e´1 can be reduced by taking for example δ “
a

2 logpppN ´ 1q{4q

the bound becomes p1´ e´pq
a

2 logpppN ´ 1q{4q and we get

lim inf
E rmaxi“1,...,N Xis

a

2 logpNq
ě 1

by taking pÑ8.

In the proof of Theorem 21 we will use the result of Proposition 27 in the form

E
„

max
i“1,...,N

Xi



ě
1
?

2

a

logpNq (8.6)

where this sub-optimal result can be optained with simpler calculations than in Proposition 27.

Comparison Theorems

The comparison theorems deal with the domination of the probabilities of some events of a gaussian vector X by the same
probability for another gaussian vector Y such that Y dominates X in a certain sense. The meaning that one impose
behind the domination can take various forms. In the sequel, we mainly deal with the case of domination in the covariance
structure.

Theorem 20. Let X “ pX1, . . . , XN q and Y “ pY1, . . . , YN q be two centered Gaussian vectors in RN such that

E rXiXjs ď E rYiYjs for pi, jq P A

E rXiXjs ě E rYiYjs for pi, jq P B

E rXiXjs “ E rYiYjs for pi, jq R AYB
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for A and B being disjoints subsets of t1, . . . , Nu2. Let f be a function on RN such that its second derivatives in the weak
sense of distributions are such that

Bi,jf ě 0 for pi, jq P A

Bi,jf ď 0 for pi, jq P B.

Then
E rfpXqs ď E rfpY qs .

Proof. Since the conclusion of the theorem is purely in expectation, one can assume that X and Y are independent and
consider for t P r0, 1s the random variable Zptq “ p1 ´ tq1{2X ` t1{2Y . Denote by φptq “ E rfpZptqqs so that one can
di�erentiate φ to get

φ1ptq “
N
ÿ

i“1

E
“

BifpZptqqZ
1
iptq

‰

,

where Z 1iptq “ Yi{p2
?
tq ´ Xi{p2

?
1´ tq. Using Stein identity in Proposition 37 for the function F “ Bif and on the

Gaussian variable X,Y we get that

E
“

BifpZptqqZ
1
iptq

‰

“

N
ÿ

j“1

ˆ
?
t

2
?
t
E rYiYjs ´

?
1´ t

2
?

1´ t
E rXiXjs

˙

E rBi,jfpZptqqs “
1

2

N
ÿ

j“1

pE rYiYjs ´ E rXiXjsqE rBi,jfpZptqqs .

Then in the matricial notations, we get that

φ1ptq “
1

2
Tr

`

E
“

∇2fpZptqq
‰

pΣY ´ ΣXq
˘

. (8.7)

The condition of the theorem imply that φ1ptq ě 0 and then E rfpXqs “ φp0q ď φp1q “ E rfpY qs.

Theorem 20 has important consequences as Slepian lemma that allows to upper bound the maximum of a collection of
Gaussian random variables with the maximum over another collection of Gaussian variables of greater covariances. It is
also possible to extract more information of Equation (8.7) to quantify the di�erence of the values of the maxima when
one controls the di�erence in the covariance matrices.

Lemma 15 (Slepian 1). Let X “ pX1, . . . , XN q and Y “ pY1, . . . , YN q be two centered Gaussian vectors in RN such that

E rXiXjs ď E rYiYjs for all i ‰ j

E
“

X2
i

‰

“ E
“

Y 2
i

‰

for all i.

Then for all real numbers λ1, . . . , λN ,

P

˜

N
ď

i“1

tYi ą λiu

¸

ď P

˜

N
ď

i“1

tXi ą λiu

¸

.

This lemma is the main ingredient to show Markovian-like results on stationary Gaussian processes. For example, one has
the following consequence.

Exercice 23. Let pXtqtě0 is a stationary Gaussian process such that for any t ě 0, E rXtX0s ě 0 show that for any
λ P R,

P

˜

sup
tPr0,S`T s

Xt ď λ

¸

ě P

˜

sup
tPr0,Ss

Xt ď λ

¸

P

˜

sup
tPr0,T s

Xt ď λ

¸

A important use of Theorem 20 is for the function

fpx1, . . . , xN q “
1

λ
log

˜

N
ÿ

i“1

eλxi

¸

. (8.8)

This function is suited to the study of maxima of random variables as seen in Lemma 14. We remark that the derivatives
of f satisfy that

řN
i“1 Bif “ 1 and then @j �xed,

řN
i“1 Bi,jf “ 0. In particular, we can write that

Bi,if “ ´
ÿ

j:j‰i

Bi,jf. (8.9)

We use this fact in the following corollary.
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Corollary 6 (Slepian 2). Let X “ pX1, . . . , XN q and Y “ pY1, . . . , YN q be two centered Gaussian vectors in RN such that
for all i, j one have E

“

pXi ´Xjq
2
‰

ď E
“

pYi ´ Yjq
2
‰

then,

E
„

max
i“1,...,N

Xi



ď E
„

max
i“1,...,N

Yi



.

Furthermore, if |E
“

pXi ´Xjq
2
‰

´ E
“

pYi ´ Yjq
2
‰

| ď ε for all i, j then

ˇ

ˇ

ˇ

ˇ

E
„

max
i“1,...,N

Xi



´ E
„

max
i“1,...,N

Yi


ˇ

ˇ

ˇ

ˇ

ď
a

ε logN.

Proof. Consider the function φ of the proof of Theorem 20. In the sequel, we denote by δi,j “ ΣYi,j ´ΣXi,j and we also omit

to write the argument Zptq of f and its derivatives. Using the notation, vXi,j “ E
“

pXi ´Xjq
2
‰

and vYi,j “ E
“

pYi ´ Yjq
2
‰

,

we see that vYi,j ´ v
X
i,j “ δi,i ` δj,j ´ 2δi,j . By (8.7), we have that

φ1ptq “
1

2

ÿ

i,j

E rBi,jf s δi,j

“
1

2

ÿ

i

E rBi,if s δi,i `
1

2

ÿ

i

ÿ

j:j‰i

E rBi,jf s δi,j

“ ´
1

2

ÿ

i

ÿ

j:j‰i

E rBi,jf s δi,i `
1

2

ÿ

i

ÿ

j:j‰i

E rBi,jf s δi,j

“
1

2

ÿ

i,j:j‰i

E rBi,jf s pδi,j ´ δi,iq

“
1

4

ÿ

i,j:j‰i

E rBi,jf s p2δi,j ´ δi,i ´ δj,jq “
1

4

ÿ

i,j:j‰i

E rBi,jf s pvXi,j ´ vYi,jq.

Moreover, the derivative Bi,jf are negative (for i ‰ j) and then this last term is positive under the hypothesis of the �rst
part of the corollary. Hence E rfpY qs ě E rfpXqs. But as in the proof of Lemma 14, we use the following inequalities

max
i“1,...,N

xi ď
1

λ
log

˜

N
ÿ

i“1

eλxi

¸

ď
1

λ
logN ` max

i“1,...,N
xi (8.10)

to say that E rmaxiXis ď E rfpXqs ď E rfpY qs ď 1
λ logN ` E rmaxi Yis and letting λ Ñ 8 gives the �rst result. For the

second part, we see that since |Bi,jf | ď 1{λ and |vXi,j ´ v
Y
i,j | ď ε, we get that φ1ptq ď λε{4 and then

|E rfpXqs ´ E rfpY qs | ď
ˇ

ˇ

ˇ

ˇ

ż 1

0

φ1ptqdt

ˇ

ˇ

ˇ

ˇ

ď
λε

4
.

Then using (8.10), we show that
ˇ

ˇ

ˇ

ˇ

E
„

max
i“1,...,N

Xi



´ E
„

max
i“1,...,N

Yi


ˇ

ˇ

ˇ

ˇ

ď
λε

4
`

logN

λ

and the result follows by optimizing in λ.

With this new tool, one is able to prove the following result that is due to Sudakov.

Theorem 21. Let X1, . . . , XN be centered Gaussian random variables. Then,

E
„

max
i“1,...,N

Xi



ě
1

2
min
i‰j

b

E rpXi ´Xjq
2s logN.

Proof. Let Z1, . . . , ZN be i.i.d. standard Gaussian variables and set δ “ mini‰jpE
“

pXi ´Xjq
2
‰

q1{2 and �nally let Yi “

δZi{
?

2. By de�nition of the random variables Yi, E
“

pYi ´ Yjq
2
‰

“ δ2 ď E
“

pXi ´Xjq
2
‰

and so by using Corollary 6, we

get that δE rmaxZis ď
?

2E rmaxXis. We �nish by using the consequence (8.6) of Proposition 27.

The great consequence of Sudakov minoration is that it gives a lower bound on the suprema of a Gaussian process. Indeed,
if T is a space endowed with the pseudo metric dpt, sq2 “ E

“

pXt ´Xsq
2
‰

, then for all 0 ă ε ď D “ DiampT q, then for a
centered Gaussian process pXtqt we have

E
„

sup
tPT

Xt



ě
1

2
ε
a

Hpε, T , dq. (8.11)
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This bound is to be compared with the Dudley entropy bound in Theorem 19. The two orders of the bounds di�er. Indeed,
Dudley's upper bound is proportional to the integral of the curve

a

Hpε, T , dq whereas the bound in (8.11) is proportional

to area of the smallest rectangle ε ˆ
a

Hpε, T , dq which can be signi�cantly smaller when the curve
a

Hpε, T , dq is very
quickly close to the abscisse axis. In general, for Gaussian processes, the Sudakov lower bound is tight whereas the bound
of Dudley is not. There exists a better chaining technique called generic chaining after the invention of Talagrand (see
[15]) that allows to bridge the gap between the two bounds. This technique will be exposed in Chapter [WRITE THIS].

8.6 Proof of Theorem 18

In order to prove Theorem 18, we give three successive lemmas that use Dudley bound along with symetrization.

Lemma 16. Let X1, . . . , Xn be i.i.d. random variables and let ε1, . . . , εn be i.i.d. Rademacher Radp1{2q random variables
independent from the variables X1, . . . , Xn. Then,

Eε

«

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εifpXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď
supfPF }f}2,Pn

?
n

` 12

ż Dn

0

c

Hpε,F , } ¨ }2,Pnq
n

dε

where Dn “ supfPF }f}n,8 for }f}n,8 “ maxi“1,...,n |fpXiq| and }f}
2
2,Pn

“ n´1
řn
i“1 fpXiq

2. The notation Eε holds for
the expectation operator on the random variables εi at Xi �xed.

Proof. In order to use Dudley's bound, one has to verify that the increments of the process p
řn
i“1 εifpXiqqf are sub-

Gaussian. For any two functions f and f 1, the random variable
řn
i“1 εipfpXiq ´ f 1pXiqq can be seen as a Rademacher

chaos of order 1 and hence is a sum of independent and bounded random variables. This fact allows us to use Hoe�ding's
inequality given in Theorem 9. This gives that the increment is sub-Gaussian of constant n´2

řn
i“1pfpXiq ´ f 1pXiqq

2 “

p 1?
n
}f ´ f 1}2,Pnq

2. We use Dudley entropy bound on the set F , then for a f0 P F ,

Eε

«

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εifpXiq ´ f0pXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď 12

ż δn{2

0

b

Hpε,F , n´1{2} ¨ }2,Pnqdε “ 12

ż δn{2

0

b

Hp
?
nε,F , } ¨ }2,Pnqdε

where δn “ n´1{2 supf }f ´ f0}2,Pn . But using Hoe�ding inequality on
řn
i“1 εif0pXiq we get that

E

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εif0pXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

“

ż 8

0

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εif0pXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

¸

dt ď

ż 8

0

2e
p´2 n2t2

ř

f0pXiq
2 qdt “

?
2π}f0}2,Pn

4
?
n

ď
sup }f}2,Pn?

n

and by a change of variables ε1 “
?
nε, we get that

ż δn{2

0

b

Hp
?
nε,F , } ¨ }2,Pnqdε “

ż

?
nδn{2

0

c

Hpε1,F , } ¨ }2,Pnq
n

dε1 ď

ż Dn

0

c

Hpε,F , } ¨ }2,Pnq
n

dε

Of course, one has that Hpε,F , }.}2,Pnq “ H2pε,F , Pnq.

Lemma 17. Let R ą 0 and assume that supfPF }f}8 ă R. If

1

n
H2pε,F , Pnq

P
ÝÑ 0, @ε ą 0

then F is P -Glivenko-Cantelli.

Proof. Since the random variables are uniformly bounded, Remark 4 can be applied and then one only have to prove

the weaker supf |Pnf ´ Pf |
P
ÝÑ 0. So one can prove that the convergence occurs in L1 to have the result. By the

symmetrization argument prove in Lemma 12 and Lemma 16, we have

E

«

sup
fPF

|Pnf ´ Pf |

ff

ď 2E

«

sup
fPF

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εifpXiq

ˇ

ˇ

ˇ

ff

“ EX

«

Eε

«

sup
fPF

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εifpXiq

ˇ

ˇ

ˇ

ffff

ď
R
?
n
` 24

ż R

0

c

H2pε,F , Pnq
n

dε.

The �rst term tend to 0, then one only has to prove that the integral tends to 0. To use Proposition 1 to prove that the
random variables of interest are U.I., we notice that by brute force

N2pε,F , Pnq ď N8pε,Fq ď
ˆ

R

ε

˙n

,
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which is an integrable function, so that,

Yn :“

ż R

0

c

H2pε,F , Pnq
n

dε ď

ż R

0

d

n log
`

R
ε

˘

n
dε “

ż R

0

a

log pR{εqdε ă 8.

Then, by the dominated convergence theorem (in its probabilistic version given by Corollary 11), Yn
P
ÝÑ 0 and since pYnqn

is U.I. (because bounded by Proposition 1) we also have that Yn
L1
ÝÑ 0 which concludes the proof.

We are now ready to tackle the proof of our main theorem of this section.

Proof of Theorem 18. For a R ą 0, we de�ne the truncated set FR “ tf1FďR : f P Fu where F is the enveloppe of the
functions in F . For two functions f1, f2 P F , the function g1 “ f11FďR and g2 “ f21FďR belong to FR. But then

ż

pg1 ´ g2q
2dPn “

ż

FďR

pf1 ´ f2q
2dPn ď 2R

ż

|f1 ´ f2|dPn

which show that the assumption n´1H1pε,F , Pnq
P
ÝÑ 0 implies that n´1H2pε,FR, Pnq

P
ÝÑ 0. Then, by Lemma 17, one

has that the set of functions FR is P -Glivenko-Cantelli. Now, by integrability of F , for any δ ą 0 there exists R0 ą 0 such
that

ş

FěR0
FdP ď δ. Since the trivial set tF1FěR0

u and FR0
are P -Glivenko-Cantelli, one have that for n large enough,

sup
fPF

ˇ

ˇ

ˇ

ˇ

ż

FďR0

fdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

ď δ a.s. and

ż

FěR0

FdPn ď 2δ a.s.

Finally, we write

sup
fPF

ˇ

ˇ

ˇ

ˇ

ż

fdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

ď sup
fPF

ˇ

ˇ

ˇ

ˇ

ż

FďR0

fdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

` sup
fPF

ˇ

ˇ

ˇ

ˇ

ż

FěR0

fdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

ď sup
fPF

ˇ

ˇ

ˇ

ˇ

ż

FďR0

fdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

`

ż

FěR0

FdPn `

ż

FěR0

FdP

ď 4δ a.s.

which �nishes the proof.

8.7 Vapnik-Chervonenkis classes

In this section, we introduce the so-called V-C dimension invented by Vapnik and Chervonenkis [18]. We also refer to [5]
for the de�nitions and combinatorial properties of the notions de�ned below. The notion of V-C dimension raised in the
study of bounds for empirical processes of the form

sup
APA

|µnpAq ´ µpAq|

where µn is the empirical measure corresponding to µ. As one can expect, the e�ciency of the convergence depends
deeply on the class of sets A. This context is simpler that the context of the beginning of the chapter but is informative
in general.

De�nition 9. Let x1, . . . , xn P Rk be �xed points. We de�ne the trace of the set A over the collection x1, . . . , xn as

Apxn1 q “ tp1x1PA, . . . ,1xnPAq P t0, 1u
n : A P Au.

The shatter coe�cient is given by

SApnq “ max
px1,...,xnqPRk

|Apxn1 q|.

By de�nition, SApnq ď 2n. The last n such that the inequality is an equality is called the dimension Vapnik and

Chervonenkis of A, this is
V “ suptn P N˚ : SApnq “ 2nu.

If @n P N˚ the shatter coe�cient equals 2n we de�ne V “ 8.
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Some examples of calculation of VC dimension

In this small section, we describe some examples of contexts where it is possible to show that the class admits a �nite VC
dimension.

• Let A “ tp´8, ts : t P Ru. By the sake of simplicity we assume that the xi are ordered x1 ă x2 ă ¨ ¨ ¨ ă xn.
Then the elements of Apxn1 q are of the form p1, . . . , 1, 0, . . . , 0q. There are exactly n ` 1 possible choices and then
SApnq “ n ` 1. Since for n “ 1, we have that n ` 1 “ 2n but for any n ą 1, n ` 1 ă 2n we have shown that the
class A has VC dimension equal to 1.

• Let A “ tra, bs : a, b P Ru. Assuming again the xi ordered, the elements of Apxn1 q are of the form p0, 0, . . . , 0, 1,
. . . , 1, 0, . . . , 0q. There are

`

n`2
2

˘

´n “ pn2`n` 2q{2 such elements. Then SApnq “ pn
2`n` 2q{2. But for n “ 1, 2

we have that SApnq “ 2n but for n ą 2 we have SApnq ă 2n. In this case, V “ 2.

• Let A “ tbdi“1p´8, tis : ti P Ru for d ě 2. By a study similar to the �rst case, one can show that SApnq ď pn` 1qd

and this allows to bound the value of V .

• Let A “ ttx : θTx ą yu : θ P Rd, y P Ru the class of half space of Rd. Then we have that SApnq ď 2d
`

n
d

˘

and a few
more calculation give that V ď d` 1.

Exercice 24. Show that in the last example, SApnq ď 2d
`

n
d

˘

. Hint: The hyperplanes are completely de�ned by d points
and the rest lie one one or the other side.

8.7.1 Sauer's Lemma

Sauer's Lemma is a result that allows to show that a class A that has a �nite V-C dimension has shatter coe�cients that
grow at a polynomial speed in n.

Lemma 18 (Sauer). Let A be a class of �nite V-C dimension V . Then, for all n ě 1,

SApnq ď
V
ÿ

i“1

ˆ

n

i

˙

.

Proof. We need the following de�nition. We say that a set B Ă t0, 1un shatters a set S “ ts1, . . . , smu Ă t1, . . . , nu if
the restriction of B to the components s1, . . . , sm is the full hypercube, that is

BS :“ tpbs1 , . . . , bsmq : pb1, . . . , bnq P Bu “ t0, 1u
m.

We de�ne the transformation

Ψ1 : Ppt0, 1unq Ñ Ppt0, 1unq
B ÞÑ Ψ1pBq “ tb : b P Bu

where @b “ pb1, . . . , bnq P B we de�ne b by:

1. If b is such that b1 “ 1, then b “ p0, b2, . . . , bnq if p0, b2, . . . , bnq R B and b “ b otherwise.

2. If b is such that b1 “ 0, then b “ b.

• Fact 1: For B Ă t0, 1un and S “ ts1, . . . , smu, we have that |Ψ1pBq| “ |B| and B shatters S if and only if Ψ1pBq
shatters S.

First of all, it is clear that Ψ1 is injective which imply that |Ψ1pBq| “ |B|. Now assume that B shatters S. If 1 R S, then
pΨ1pBqqS “ BS and this case is obvious. In the other case, since BS “ t0, 1u

m there is no room for case 1 to modify b.
Then, we always have b “ b and again pΨ1pBqqS “ BS .

• Fact 2: De�ne Ψ2, . . . ,Ψn analog transformations on the coordinates 2, . . . , n and let B0 Ă t0, 1un and Bn “
Ψn ˝ ¨ ¨ ¨ ˝ Ψ1pB0q. Assume that any set S of m indexes with m ą V are not shattered by B0. For an element v of
the �nal set Bn, we de�ne

Tv “ tb P t0, 1u
n : bi ď viu.

Then Tv Ă Bn and v does not have more than V ones.
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Indeed, we have seen that p1, v2, . . . , vnq P B1 ñ p0, v2, . . . , vnq P B1. The following transformations may change the vector
v2, . . . , vn but in both p1, v2, . . . , vnq and p0, v2, . . . , vnq in the same way, then p1, v2, . . . , vnq P Bn ñ p0, v2, . . . , vnq P Bn.
Similarly, @i, pv1, . . . , 1, . . . , vnq P Bi ñ pv1, . . . , 0, . . . , vnq P Bi, that transfers to Bn too. This implies that every vector
with entries bi ď vi are in Bn or equivalently, Tv Ă Bn.
Since B0 does not shatter S, Bn either (by fact 1). Now, assume that v has m ą V ones and take S “ ti : vi “ 1u. S is a
set such that t0, 1um “ pTvqS Ă pBnqS and then Bn shatters S but this is absurd then v cannot have more that V ones.

• Fact 3: Let T “ YvPVTv where V is the set of all vectors with no more that V ones. Then |Bn| Ă T and |T | “
řV
i“0

`

n
i

˘

.

Since by fact 2, there is no vectors with more than V ones in Bn, we directly have Bn Ă T . T can be rewritten as the
disjoint union of the sets of vectors with exactly i ones. This gives, |T | “

řV
i“0

`

n
i

˘

.

• Fact 4: Conclusion

The inequality is trivial for n ď V since the sum equals 2n in that case. For the case n ą V , let x1, . . . , xn P Rk such
that B0 “ Apxn1 q and SApnq “ |B0| (which exists by de�nition of SApnq). If one set of indexes S with m ą V would be
shattered by B0 that would mean that SApmq “ 2m which is absurd! Then, we are in the case of fact 2 and

SApnq “ |B0| “ |Bn| ď
V
ÿ

i“0

ˆ

n

i

˙

.

As a direct consequence, we show that the shatter coe�cient cannot grow exponentially fast when the V-C dimension is
�nite as stated in the following result.

Corollary 7. Let A be a class of �nite V-C dimension V . Then, for any n,

SApnq ď pn` 1qV

and in the special case n ě V we have,

SApnq ď
´ne

V

¯V

.

Proof. We have for all n,
V
ÿ

i“0

ˆ

n

i

˙

ď

V
ÿ

i“0

ni

i!
ď

V
ÿ

i“0

niV !

i!pV ´ iq!
ď

V
ÿ

i“0

ni
ˆ

V

i

˙

ď pn` 1qV .

If n ě V so V {n ď 1 and

ˆ

V

n

˙V V
ÿ

i“0

ˆ

n

i

˙

ď

V
ÿ

i“0

ˆ

V

n

˙iˆ
n

i

˙

ď

n
ÿ

i“0

ˆ

V

n

˙iˆ
n

i

˙

ď

ˆ

1`
V

n

˙n

ď eV .

8.7.2 Entropy on the hypercube

We de�ne the Hamming distance ρ on t0, 1un between two elements b, c P t0, 1un by,

ρpb, cq “

g

f

f

e

1

n

n
ÿ

i“1

1bi‰ci .

We de�ne a probability measure on a class of sets A relatively to a measure Q by

dQpA,Bq “ pQpA4Bqq1{2 “ }1A ´ 1B}2,Q.

The following theorems deal with the fact that V-C dimension bounds the entropy of A endowed with dQ and Apxn1 q
endowed with ρ.

Theorem 22. Let A be a class of subsets of Rk of V-C dimension V ă 8. Then, for each x1, . . . , xn P Rd y 0 ď ε ď 1,

Hpε,Apxn1 q, ρq ď
V

1´ 1{e
log

4e

ε2
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Proof. Let Cε be a ε-net of the class Apxn1 q. We denote by cp1q, . . . , cpMq the elements of the ε-net Cε. For two di�erent
points cpiq and cpjq, we introduce

Ai,j “ tt P t1, . . . , ku : c
piq
t ‰ c

pjq
t u

Let Y1, . . . , YK be K independent uniform random variables on t1, . . . , ku. Then by the fact that cpiq and cpjq are at
distance at least ε from each other, we have that P pYm P Ai,jq “ |Ai,j |{k ě ε2k{k “ ε2. Then

P p@i, j ďM : i ‰ j, at least one Ym belongs to Ai,jq “ 1´ P pDi, j ďM : i ‰ j,@m, Ym R Ai,jq

ě 1´M2P p@m, Ym R A1,2q

“ 1´M2
K
ź

m“1

P pYm R A1,2q

ě 1´M2p1´ ε2qK ě 1´M2e´Kε
2

.

By taking K “ t2 logM{ε2u` 1, we see that the above probability is positive. In other words, there is a realization of the
random variables Y1pωq “ y1, . . . , YKpωq “ yK that satisfy the event

Ş

i‰j

Ť

mtym P Ai,ju. Since we have shown that for

any i and j, there exists at least one coordinate ym for which c
piq
ym ‰ c

pjq
ym , any two elements of pCεqy1,...,yK (that is de�ned

as the restriction of the elements of Cε to the coordinates y1, . . . , yK) are also distinct. Then |pCεqy1,...,yK | “ |Cε| “ M .
Without loosing in generality, we assume that |ty1, . . . , yKu| “ K (or that the ym are all distinct) since the previous
property remains true if one add extra coordinates. By Sauer lemma, for K ě V ,

M “ |pCεqy1,...,yK | ď |ApyK1 q| ď SApKq ď

ˆ

eK

V

˙V

.

Now, if logM ě V then K ě V and we also have that

logM ď V log

ˆ

eK

V

˙

ď V log

ˆ

4e logM

V ε2

˙

“ V

ˆ

log
4e

ε2
` log

logM

V

˙

ď V log
4e

ε2
`

1

e
logM,

from which we directly deduce that logM ď V
1´1{e log 4e

ε2 . Otherwise, logM ă V and this last fact is trivially veri�ed. By

Proposition 25, Cε is a covering of the set Apxn1 q and then Hpε,Apxn1 q, ρq ď logM

Theorem 23. Let A be a class of subsets of Rk of V-C dimension V ă 8. Let Q be a probability measure on Rk. Then,
for each 0 ď ε ď 1,

Hpε,A, dQq ď
V

1´ 1{e
log

4e

ε2

Proof. We proceed as in the proof of Theorem 22. Let Cε be a ε-net of the set A. The denote Ap1q, . . . , ApMq the points
(that are events) of Cε. Let Y1, . . . , YK be i.i.d. random variables of law Q. Then P

`

Ym P A
piq4Apjq

˘

ě ε2 be de�nition
of the ε-net. We �nish the proof by the exact same arguments as in the proof of Theorem 22.

8.7.3 V-C classes for functions

In this section, we link the entropy on spaces of functions with a notion of V-C dimension for a class of sets related to
those functions. For a real valued function f : X Ñ R, we de�ne its subgraph as the set

SubGrpfq “ tpx, yq P X ˆ R : y ă fpxqu.

By an obvious use of Fubini theorem, for a probability measure Q on X and a non-negative function f ,

ż

X
fpxqdQpxq “

ż

X

ż fpxq

0

1dydQpxq “

ż

XˆR
10ďyďfpxqdpQˆ λqpx, yq

where λ holds for Lebesgue measure on R. It is then clear that for two functions f and g for which we denote by Gf and
Gg their respective subgraphs,

ż

X
|fpxq ´ gpxq|dQpxq “

ż

XˆR
10ďyďgpxq´fpxqdpQˆ λqpx, yq `

ż

XˆR
10ďyďfpxq´gpxqdpQˆ λqpx, yq

“

ż

XˆR
1fpxqďyďgpxqdpQˆ λqpx, yq `

ż

XˆR
1gpxqďyďfpxqdpQˆ λqpx, yq

“

ż

XˆR
1Gf4Gg px, yqdpQˆ λqpx, yq

“ pQˆ λqpGf4Ggq (8.12)
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where we used on the second step the fact that the Lebesgue measure is translation invariant. This motivates the following
de�nition.

De�nition 10. Let F be a class of real valued functions. We de�ne the VC dimension of the class F as the VC
dimension of the class

G “ tSubGrpfq : f P Fu.

We say that a class F is a VC class if its VC dimension is �nite.

Example 8. A somewhat obvious consideration is that the set of functions

F “ t1A : A P Au,

where A is a VC class, forms a VC class (in the sense of De�nition 10) of enveloppe given by F “ 1. This is particularly
well suited for density/measure estimation over a class of events that form a VC class. The following theorems show that
the entropy of such a class of indicator functions is therefore, for a constant A ą 0

H1pε,F , Pnq ď A log

ˆ

1

ε

˙

, @ε ą 0.

In particular, the set F is P -Glivenko-Cantelli by the use of Theorem 18.

The tools developed for VC classes of sets can be used in this context to bound the entropy of a set of functions F by a
explicit formula that only depends on the VC dimension, the radius of the balls of the covering ε and the Lr norm of the
enveloppe. It is remarkable that the following upper bound only depends on the subjacent probability measure Q through
}F }r,Q, the LrpQq norm of the enveloppe.

Theorem 24. Let F be a class of VC dimension V and such that for a probability measure Q, the enveloppe function
F P L1pQq then for any ε P p0, 1q,

H1pε}F }1,Q,F , Qq ď
V

1´ 1{e
log

8e

ε
.

If, in addition, F P LrpQq then for any ε P p0, 1q, one have that

Hrpε}F }r,Q,F , Qq ď
V

1´ 1{e
log

8e

pε{2qr
.

Proof. We begin with the case r “ 1 from which we will deduce the general case. As seen in Equation (8.12), Q|f ´ g| “
pQ ˆ λqpGf4Ggq. We consider the probability P that is the measure Q ˆ λ conditioned to the set tpx, yq : |y| ď F pxqu.
Then P “ pQˆ λq{2}F }1,Q. By using Theorem 23, we get that

H1p2ε}F }1,Q,F , Qq “ Hp2ε}F }1,Q,G, Qˆ λq “ Hp
?
ε,G, dP q ď

V

1´ 1{e
log

4e

ε

where G is the set of the subgraphs of the functions in F . This gives the result for r “ 1 by replacing ε by ε{2 in the
previous chain of inequalities. For r ą 1, by de�ning the probability measure R such that dR{dQ “ F r´1{QF r´1 we can
write

Q|f ´ g|r ď Q|f ´ g|p2F qr´1 “ 2r´1QF r´1 ˆR|f ´ g|

so that }f ´ g}r,Q ď 2pQF r´1q1{r ˆ }f ´ g}
1{r
1,R. By direct comparison of the entropies for di�erent distances, we get

Hp2ε}F }r,Q,F , } ¨ }r,Qq ď H

ˆ

εr
}F }rr,Q
QF r´1

,F , } ¨ }1,R
˙

“ H1pε
r}F }1,R,F , Rq ď

V

1´ 1{e
log

8e

εr
.

As a direct consequence of the preceding result, one can show that a VC class have a �nite entropy for the L1 norm as
long as the enveloppe is integrable. Indeed, one can use Theorem 24 for any probability measure Q “ Pn and since the
bound is completely uniform, one obtain

Corollary 8. Let F be a VC class such that the enveloppe F belongs to L1pP q, then F is P -Glivenko-Cantelli.
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8.8 P -Glivenko-Cantelli classes through convexity

It is remarkable that the property of being P -Glivenko-Cantelli behaves well with the convexi�cation of a set F .

Proposition 28. Let F be a P -Glivenko-Cantelli class then its convex hull ConvpFq de�ned by

ConvpFq “

#

p
ÿ

j“1

θjfj : p P N˚, θj ě 0 and
p
ÿ

j“1

θj “ 1

+

(8.13)

is also P -Glivenko-Cantelli.

Proof. Let p ě 1, let pfjqj“1,...,p P F and
ř

j θj “ 1, then

ˇ

ˇ

ˇ

ˇ

ˇ

ż p
ÿ

j“1

θjfjdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

j“1

θj

ż

fjdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

p
ÿ

j“1

θj

¸

max
j“1,...,p

ˇ

ˇ

ˇ

ˇ

ż

fjdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

ď sup
fPF

ˇ

ˇ

ˇ

ˇ

ż

fdpPn ´ P q

ˇ

ˇ

ˇ

ˇ

Then supfPConvpFq |Pnf ´ Pf | “ supfPF |Pnf ´ Pf | and since F is P -Glivenko Cantelli, so is ConvpFq.

This convenient fact is very useful in practice since one can prove that the extreme points of F form a P -Glivenko Cantelli
class to get that the entire class F is also P -Glivenko Cantelli.

8.9 Dudley entropy bound and Orlicz norm

8.9.1 A global bound

The ideas behind the proof of Dudley entropy bound are possible to adapt to prove the concentration of the supremum
over a class of random variables with sub-Gaussian increments. These fact will be useful to use the so-called peeling
device.

Theorem 25. Let pT , dq be a metric space and let pXtqtPT be a random process such that for all s, t P T ,

}Xs ´Xt}ψ2 ď dps, tq

where } ¨ }ψ2 is the Orlicz norm of section 7.3. Then, for all t0 P T ,
›

›

›

›

sup
tPT

|Xt ´Xt0 |

›

›

›

›

ψ2

ď 12

ż δ{2

0

a

Hpε, T , dqdε

where δ “ suptPT dpt, t0q.

In particular, we see that the suprema of a sub-Gaussian process is a sub-Gaussian random variable. The result of theorem
25 is global since it is true for all range of deviation. Indeed, there exist constants K,C ą 0 such that

P
ˆ

| sup
tPT

|Xt ´Xt0 | ě a

˙

ď K exp

˜

´C
a2

şδ{2

0

a

Hpε, T , dqdε

¸

, @a ą 0. (8.14)

The entropy bound is independent of a so the name of global bound. In some range of applications, it can be su�cient to
have a bound that is valid for a range of a that is limited. Such bounds do not require to re�ne the covering until that the
radius of the balls that cover T tends to 0. This idea is at the origin of the stopped chaining and of the peeling argument.



Chapter 9

Deviation bounds and peeling device

9.1 A local bound through uniform discretization

In this section we investigate a special case where the discretization given by the chaining technique can be re�ned. We
assume that the process pXtqtPT is sub-Gaussian and can be discretized uniformly by a set Sδ such that

sup
tPT

inf
sPSδ

|Xt ´Xs| ď δ. (9.1)

Under this assumption, one will be able to bound the deviation of order δ of the suprema of the process pXtqt.

The empirical process Going back to the empirical process ppPn ´ P 1nqfqfPF , it is possible to verify the previous
condition using the empirical distance. If we assume that the entropy H1pδ,F , Pn ´ P 1nq is �nite, there exists a covering
of the set F with Cδ “ pgiqi as the set of centers. In this case, the condition is

sup
fPF

inf
giPCδ

|pPn ´ P
1
nqf ´ pPn ´ P

1
nqgi| ď sup

fPF
inf
giPCδ

}f ´ gi}1,Pn´P 1n ď δ.

In this case we have the following result.

Proposition 29. Let pXtqtPT be a stochastic process on the space T . We assume that there exists a constant V ą 0 such
that every random variable Xt veri�es }Xt}

p
ψp
ď V for ψp : xÑ ex

p

´ 1 and p ą 0 . Assume moreover that the condition

(9.1) is veri�ed for a value δ ą 0. Then, there exists a universal constant K ą 0,

P
ˆ

sup
tPT

|Xt| ě 2δ

˙

ď 2 exp

ˆ

´K
δp

V ψ´1
p p|Sδ|q

˙

.

Proof. Since the functions ψp satisfy in particular the conditions of Proposition 21, the result holds by noticing that

P
ˆ

sup
tPT

|Xt| ě 2δ

˙

ď P
ˆ

max
sPSδ

|Xs| ě δ

˙

.

One can also derive the direct bound that follows from a similar idea as in (7.6) and obtain

P
ˆ

sup
tPT

|Xt| ě 2δ

˙

ď exp

ˆ

´K
δp

V
` logp|Sδ|q

˙

.

A natural example is the case of empirical processes again where the uniform discretization is given by the centers of the
ball in the empirical covering. The set Sδ is the centers of the balls of radius δ that cover (for the empirical distance given
by the norm } ¨ }1,Pn´P 1n) and |Sδ| “ N1pε,F , Pn ´ P 1nq.

9.2 The peeling device

In this section, we assume that the functions in F are such that

sup
fPF

}f}8 ďM.

69
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The idea behind the peeling device is to cut the set F by levels that have a compared value for a given criteria. More
precisely, we assume given a function τ : F Ñ r∆, Rq such that ∆ ą 0 and R is any positive real or `8. Let pmsq

S
s“0 be

an increasing sequence of numbers such that m0 “ ∆ and mS “ R. In the special case of R “ `8, we impose S “ `8
and the condition mS “ R takes the form of ms Ñ `8 when sÑ `8. We say that pFsqSs“1 is a peeling of F if

F “
S
ď

s“1

Fs

and Fs “ tf P F : ms´1 ď τpfq ă msu. The key point of the peeling idea is the following result.

Lemma 19. Let pXf qfPF be a stochastic process de�ned on the set of functions F . Then for any a ą 0,

P

˜

sup
fPF

|Xf |

τpfq
ě a

¸

ď

S
ÿ

s“1

P

˜

sup
fPF :τpfqăms

|Xf | ě ams´1

¸

.

Proof. The proof consists in a simple break of the supremum.

P

˜

sup
fPF

|Xf |

τpfq
ě a

¸

ď P

˜

sup
s“1,...,S

sup
fPFs

|Xf |

τpfq
ě a

¸

ď

S
ÿ

s“1

P

˜

sup
fPFs

|Xf |

τpfq
ě a

¸

ď

S
ÿ

s“1

P

˜

sup
fPFs

|Xf |

ms´1
ě a

¸

ď

S
ÿ

s“1

P

˜

sup
fPF :τpfqăms

|Xf | ě ams´1

¸

,

where we used the de�nition of the set Fs in the last two inequalities.

The peeling device is particularly useful to control the empirical process deviation using simple bounds as Proposition 29.
The bounds that we derive now take the form of deviation bounds on the ratio suppPn ´P qf{}f}. The following result is
key to detail the assumptions of Donsker theorems that will be studied in the following chapter.

The Rademacher process We detail the peeling device for the process that one has encountered a few times, the
process pνf qfPF “ pn

´1
ř

i εifpXiqqfPF . For this purpose, we use the peeling device for the speci�c increasing sequence
m2
s ´m2

0 ě s and m0 ą 0 and the criteria function τpfq “ }f}2. Since the process is sub-Gaussian conditionally to the
variables Xi, we write that

Pε

˜

sup
fPF

νf
}f}2

ě 2a

¸

ď

8
ÿ

s“1

Pε

˜

sup
fPF :}f}2ăms

νf ě 2ams´1

¸

ď

8
ÿ

s“1

2 exp

ˆ

´n
a2m2

s´1

8M2
`H2pams´1,F , Pnq

˙

where we used Hoe�ding inequality for the empirical process νf and we used the fact that }f}8 ď M . Finally one have
that

Pε

˜

sup
fPF

νf
}f}2

ě 2a

¸

ď 2 exppH2pa,F , Pnqq ˆ
8
ÿ

s“0

expp´a2m2
snq

ď 2 exppH2pa,F , Pnqq ˆ
expp´a2m0nq

1´ expp´a2nq



Chapter 10

Uniform Central Limit Theorems

In this chapter, we derive central limit theorems that will be valid for empirical processes. Those can also be called uniform
central limit theorems. In all this chapter we will be interested in studying the limiting behavior of the process

Zn “
 

Znpfq “
?
npPnf ´ Pfq : f P F

(

.

We also assume that a speci�c element f0 is of particular interest and de�ne,

Fpδq “ tf P F : }f ´ f0} ď δu.

We have to give a precise meaning to the convergence in distribution of the process Zn. In the notions of convergence
given in Chapter 2, we had to have the notion of distance on the space of the values of the random variables. The problem
is similar to the measurability of the supremum of a random process that we faced in the beginning of Chapter 8.

Weak convergence of random processes To speak about weak convergence of the random processes, we �rst have to
ensure that the object `random process' is an element of a metric space. We successively increase in di�culty/generality
along with the cases below. We denote by Z : f P F Ñ R the random process that associates to any element f P F a real
random number denoted by Zpfq. To be able to use distances, we will assume some structure on the realizations (also
called trajectories) of the random process.

1. When the trajectories of the process Z are bounded on F , we can use the supremum norm } ¨ }8 de�ned as

}Z}8 “ sup
fPF

|Zpfq|.

We denote by `8pFq, the space of functions de�ned on F that have a �nite in�nite norm. Obviously, the space
p`8pFq, } ¨ }8q is a metric space.

2. If the space F can be endowed with a measure structure that makes of F ,Σ a measurable space, then one can de�ne
the LppFq spaces for 1 ď p ă 8. The spaces pLppFq, } ¨ }pq where the norm is the Lebesgues norm are metric spaces.
Then if the trajectories of the process are elements of a same LppFq, they belong to a metric space.

3. When the trajectories of the process Z are almost surely bounded and the space F is measurable, one can use the

}Z}essup “ inftC ě 0 : |Z| ď C almost surely.u

The space of trajectories almost surely bounded is denoted by L8pFq and when associated with the norm } ¨ }essup,
it is a metric space.

4. If the space F can be de�ned as F “
Ť8

i“1 Fi and denote `8ppFiqiq the space of functions f : F Ñ R such that all
the restrictions f|Fi are bounded. We also denote by }f}Fi,8 the values }f|Fi }8. Then one can de�ne the norm

}f} “
8
ÿ

i“1

p}f}Fi,8 ^ 1q2´i,

that makes the space p`8ppFiqiq, } ¨ }q a metric space.
For example, if one takes the spaces Fi to be the intervals r´i, is, this metric is the metric of the uniform convergence
on every compact of R.
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In the following, we do not detail in which of these context we assume to be in but only represent the underlying metric
space as pD, } ¨ }q. The metric structure allows us to talk about continuous functions and Lipschitz functions on the space
D. For example, a Lipschitz transformation of the process Z is hpZq where the function h : DÑ R is such that @x, y P D,
|hpxq ´ hpyq| ď λ}x´ y}.

De�nition 11 (Convergence in distribution in D). We say that a sequence of random processes pZnqn of values in a
metric space pD, } ¨ }q converges weakly to a random process Z i� for any Lipschitz function h : DÑ R

E rhpZnqs Ñ E rhpZqs . (10.1)

We still denote Zn
pdq
ÝÑ Z for this convergence. Obviously, the notion of convergence is dependent on the topology given

by the metric space pD, } ¨ }q.

This de�nition imposes in particular that every �nite dimensional marginal pZnpf1q, . . . , Znpfkqq converges in distribution
to the �nite dimensional marginal pZpf1q, . . . , Zpfkqq.

Exercice 25. Prove that the last sentence holds true.

For the particular case of empirical processes, we de�ne the notion that replaces the convergence in distribution toward
a Gaussian random variable. We recall that a Gaussian process G on a set T is a collection of random variables
G “ pGtqtPT such that for any �nite set pt1, . . . , tkq of elements of T , the vector pGt1 , . . . , Gtkq is Gaussian.

De�nition 12 (P-Donsker). For a sample X1, . . . , Xn of common law P , we de�ne the normalized empirical process by

Zn “
 

Znpfq “
?
npPnf ´ Pfq : f P F

(

where F Ă L2pRq. We say that the process Zn is P -Donsker if Zn
pdq
ÝÑ G where G “ tGpfq : f P Fu is the unique

centered Gaussian process such that CovpGpfq, Gpf 1qq “ Pff 1 ´ PfPf 1 for any two functions f, f 1 P F .

The study of the �rst chapters showed that the convergence in distribution of Zn cannot occur towards a random process
that would not be a Gaussian process. Indeed, by the TCL theorem (in Theorem 6) any marginals pZnpf1q, . . . , Znpfkqq
converges in distribution to a Gaussian vector.

10.1 A fundamental Lemma towards P-Donsker classes

We derive a fundamental su�cient condition for a class F to be P -Donsker in the case where the trajectories of the
empirical process are a.s. bounded.

Lemma 20. Let F be a class of functions included in L2pP q that is totally bounded. Let Zn be a random process such
that a.s. its trajectories belong to `8pFq. We assume that @η ą 0, Dδ ą 0,

lim sup
nÑ8

P

¨

˚

˝

sup
f1,f2PF
}f1´f2}ďδ

|Znpf1q ´ Znpf2q| ą η

˛

‹

‚

ď η. (10.2)

Then the class F is P -Donsker.

Proof. Let δ ą 0 be �xed. Since the set F is totally bounded, one can �nd a �nite subset Fδ of F such that for all f P F ,
Dfδ P Fδ such that }f ´ fδ} ď δ. Let k “ |Fδ|. Let h : D Ñ R be a Lipschitz function (i.e. @x, y P D, |hpxq ´ hpyq| ď
λ}x´ y}D). We de�ne a function Πδ : F Ñ Fδ such that @f , Πδpfq is an element of Fδ such that }f ´ fδ} ď δ (in case of
multiple choices, one just choose one of them arbitrarily). The process Zn ˝Πδ is no more than a random vector of length
k. Indeed, if we denote by f1, . . . , fk the elements of Fδ, then Zn ˝ Πδ can only take the �nitely many possible values
Znpf1, . . . , Znpfkq. Then there exists a Lipschitz function h̃ : Rk Ñ R such that

hpZn ˝Πδq “ h̃pZn ˝Πδq.

By the classical TCL theorem on vectors, Zn ˝Πδ
pdq
ÝÑ N p0,Σq where Σf,g “ Pfg ´ PfPg for all f, g P Fδ. Now de�ne a

centered Gaussian process G such that for all f, g P F ,

CovpGpfq, Gpgqq “ Pfg ´ PfPg
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then G ˝Πδ is a Gaussian vector which have the same distribution has N p0,Σq. Then Zn ˝Πδ
pdq
ÝÑ G ˝Πδ and

E rhpZn ˝Πδqs “ E
”

h̃pZn ˝Πδq

ı

ÝÑ
nÑ`8

E
”

h̃pG ˝Πδq

ı

“ E rhpG ˝Πδqs

Now, we show that the condition (10.2) holds also for the process G without the limit in n. Let G be a �nite subset of F .
Then by Portmanteau lemma (Lemma 1),

P

¨

˚

˝

sup
f1,f2PG
}f1´f2}ďδ

|Gpf1q ´Gpf2q| ą η

˛

‹

‚

ď lim inf P

¨

˚

˝

sup
f1,f2PG
}f1´f2}ďδ

|Znpf1q ´ Znpf2q| ą η

˛

‹

‚

ď lim inf P

¨

˚

˝

sup
f1,f2PF
}f1´f2}ďδ

|Znpf1q ´ Znpf2q| ą η

˛

‹

‚

ď lim supP

¨

˚

˝

sup
f1,f2PF
}f1´f2}ďδ

|Znpf1q ´ Znpf2q| ą η

˛

‹

‚

ď η.

Since the last inequality is true for any �nite set G, it is also true for any G countable. Proceeding as in the proof of
Theorem 19, since F is totally bounded, one can �nd a countable set G that is dense inside of F . Hence by de�ning G̃ the
random process on F de�ned as G̃pfq “ Gpfq for any f P G and limGpfnq where fn Ñ f P F otherwise. This construct a
a.s. continuous process G̃ that is a modi�cation of G and such that

P

¨

˚

˝

sup
f1,f2PF
}f1´f2}ďδ

|G̃pf1q ´ G̃pf2q| ą η

˛

‹

‚

ď η.

To conclude the proof by showing that Zn
pdq
ÝÑ G̃.

E rhpZnqs ´ E
”

hpG̃q
ı

“ pE rhpZnqs ´ E rhpZn ˝Πδqsq ` pE rhpZn ˝Πδqs ´ E rhpG ˝Πδqsq ` pE
”

hpG̃ ˝Πδq

ı

´ E
”

hpG̃q
ı

q

But

|E rhpZnqs ´ E rhpZn ˝Πδqs | ď λη ` 2}h}8P p}Zn ´ Zn ˝Πδ}D ą ηq

ď λη ` 2}h}8P

¨

˚

˝

sup
f1,f2PF
}f1´f2}ďδ

|Znpf1q ´ Znpf2q| ą η

˛

‹

‚

which implies that the term |E rhpZnqs ´ E rhpZn ˝Πδqs | tends to 0 when nÑ 8 by choosing η and δ close enough to 0.
The exact same argument can be repeated on the last term in the decomposition by using the equicontinuity condition
that we showed on G̃. The �rst part of the proof already showed that E rhpZn ˝Πδqs ´ E rhpG ˝Πδqs Ñ 0. This �nishes
the proof.

In facts, the condition (10.2) on a totally bounded set F imposes that the trajectories are a.s. bounded and then belong
to `8pFq. This can be shown by using Borel-Cantelli Lemma and noticing that the process Zn is trivially bounded on
a �nite subset of F . Lemma 20 only deals with the case of a random process Zn with trajectories belonging to `8pFq.
The ideas can be adapted to the other natural metric space described above. For example, if the trajectories of Zn are
elements of LppF , F q where F is a probability measure on F , one have to assume that

lim supP

˜

ż

}f1´f2}ďδ

pZnpf1q ´ Znpf2qq
pdF ą η

¸

ď η.

10.2 P -Donsker theorems

In this section, we derive a theorem under a condition of a control of the empirical entropy over the class F .

Theorem 26. We assume that pF , } ¨ }q Ă L2pP q have a enveloppe F P L2pP q and that there exists a non-decreasing
function H such that
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1.
ş1

0

a

Hpδqdδ ă 8.

2. lim
AÑ8

lim supP
´

supδą0
H2pδ,F,Pnq

Hpδq ą A
¯

“ 0.

Then, for all η ą 0, there exists δ ą 0 such that

lim sup
nÑ8

P

¨

˚

˝

sup
f1,f2PF
}f1´f2}ďδ

|Znpf1q ´ Znpf2q| ą η

˛

‹

‚

ď η.

Proof. We de�ne the events Aδ “ tsup}f1´f2}ďδ |Znpf1q ´ Znpf2q| ą ηu and En,A “ tsupδą0
H2pδ,F,Pnq

Hpδq ą Au. Then

P pAδq “ E
“

1Aδ1En,A

‰

` E
”

1Aδ1Ecn,A

ı

ď P pEn,Aq `
E
”

sup}f1´f2}ďδ |Znpf1q ´ Znpf2q|1Ecn,A

ı

η

“ P pEn,Aq `
E
”

sup}f1´f2}ďδ |Znpf1 ´ f2q|1Ecn,A

ı

η

ď P pEn,Aq ` 24
E
”

şδn{2

0

a

H2pε,G, Pnqdε 1Ecn,A
ı

η

where G “ tg “ f1 ´ f2 : f1, f2 P F and }g} ď δu and δn “ supgPG }g}n,2. First of all, a covering of F by balls of radius
ε gives directly a covering of G by balls of radius 2ε. Indeed, if we denote by f1, . . . , fk the centers for a covering of F ,
then the functions gi,j “ fi ´ fj de�ne the centers a covering for G where the radius has to be multiplied by 2. Then
H2p2ε,G, Pnq ď 2H2pε,F , Pnq. We are now ready to apply theorem 18 to the empirical process p}f ´ f 1}2n,2qf,f 1PF . For
any x, pf ´ f 1q2pxq ď 2F pxqpf ´ f 1qpxq so that }f ´ f 1}2n,2 ď 2}F }n,2}f ´ f

1}n,2. By the convergence given by the law of

large numbers }F }n,2
a.s.
ÝÑ }F }2 we have that for n large enough, @f, f 1 P F ,

}f ´ f 1}2n,2 ď 4}F }2}f ´ f
1}n,2.

Let
H “ tpf ´ f 1q2 : f, f 1 P Fu.

So we have that
H2pε,H, Pnq ď H2p

ε

4}F }2
,G, Pnq ď 2H2p

ε

8}F }2
,F , Pnq.

But the enveloppe of the class H is x ÞÑ supf1,f2
pf1 ´ f2q

2pxq ď 4F 2pxq is in L1pP q and then

sup
f1,f2

ˇ

ˇ}f1 ´ f2}
2
2,n ´ }f1 ´ f2}

2
2

ˇ

ˇ

a.s.
ÝÑ 0

so that for n large enough, for every f1, f2 P F ,

1

2
}f1 ´ f2}2,n ď }f1 ´ f2}2 ď 2}f1 ´ f2}2,n

and then for n large enough, H2p2ε,F , P q ď H2pε,F , Pnq which implies that F is totally bounded. The same result also
implies that δn ď 2δ, for all n large enough. Finally,

P pAδq ď P pEn,Aq ` 48
?

2
E
”

şδ

0

a

H2pε,F , Pnqdε 1Ecn,A
ı

η
ď P pEn,Aq ` 48

?
2
E
”

şδ

0

a

Hpεqdε
ı

η

We conclude the proof by taking nÑ8, AÑ8 and δ Ñ 0.



Chapter 11

Birman and Solomjak theory

In this chapter, we derive the calculation leading to concrete calculations on the entropy of various sets of functions with
enough regularity. The good set up for this study is the functional space Wα

p pRmq that hold for Sobolev spaces. This
theory is taken from the seminal paper [1].

11.1 Notations and de�nitions

11.1.1 Functional space Wα
p p∆q and Vβp∆q

Let Qm be the m-dimensional half-open unit cube in Rm (i.e. 0 ď xi ă 1, i “ 1, . . . ,m). We denote by k “ pk1, . . . , kmq
a multi-index (@i, ki is an non-negative integer), xk “

śm
i“1 x

ki
i and |k| “

ř

ki. We denote by Dk the corresponding
diferencial operator given by

Dk “
B|k|

Bxk1
1 . . . Bxkmm

.

For a cube ∆ with edges parallel to the coordinate axes, p ě 1, α ą 0 we denote by Wα
p p∆q the Sobolev space endowed

with its natural norm } ¨ }Wα
p p∆q

. We recall that for θ “ α´ tαu and u PWα
p p∆q,

}u}Wα
p p∆q

“ }u}Lpp∆q ` }u}Lαp p∆q

where

}u}Lαp p∆q “
ÿ

|k|“α

ż

∆

|Dku|pdx.

The semi-norm } ¨ }Lαp p∆q, has a homogeneity property with respect to linear transformation of the cube. For example, if
one takes ∆ “ x0 ` hQ

m, then

}u}Lαp p∆q “ hmp
´1
´α}u}Lαp pQmq. (11.1)

In the one dimensional case (∆ is then an interval), we will use the notion of function of bounded β-variation denoted by
Vβp∆q. Let β ě 1. We say that u P Vβp∆q, if

}u}β
V 0
β p∆q

“ sup
n
ÿ

i“1

|upxiq ´ upxi´1q|
β

is �nite. The suprema is taken over all the possible �nite sets of points x0 ă x1 ă ¨ ¨ ¨ ă xn in the interval ∆. Of course,
the set Vβp∆q is a Banach space relatively to the norm

}u}Vβp∆q “ }u}V 0
β p∆q

` sup
xP∆

|upxq|.

11.1.2 Partitions Λ

In this section we consider partition of the cube Qm where the elements are also m-dimensional cubes, generally denoted
by Λ. We denote by |Λ| the number of cubes in this partition and Λ “ t∆1, . . . ,∆|Λ|u. A elementary extension of the
partition Λ is a partition Λ1 obtained by dividing some cubes in Λ into 2m smaller cubes (by slicing in every dimension).
The notation Λ0 holds for the trivial partition.

75
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Cube argument functions We de�ne a non-negative function J on the half open cubes ∆ that is semiadditive from
below: For any partition of ∆ into smaller cubes ∆j ,

ÿ

j

Jp∆jq ď Jp∆q.

Let |∆| be the Euclidean volume of the cube ∆ and let a ą 0. We de�ne

gapJ,∆q “ |∆|
aJp∆q

and the following function of a partition Λ

GapJ,Λq “ max
∆PΛ

gapJ,∆q.

Slicing strategy One wants to track the minimal value of Ga given that the partitions considered have at most a certain
number of elements. In other words, one is looking to

Minimize Λ ÞÑ GapJ,Λq (11.2)

where |Λ| ď n.

One employs a strategy of successive divisions. The �rst step is to divide Qm into 2m cubes and call Λ1 the partition
obtained. Assuming the partition Λi already constructed, we slice the cubes ∆ for which gapJ,∆q is such that

gapJ,∆q ě 2´maGapJ,Λiq (11.3)

into 2m smaller cubes. This constructs a sequence TapJq “ pΛiqiPN of partitions such that Λi`1 is an elementary extension
of Λi.

11.1.3 Two elementary lemmas

Lemma 21. Suppose that a cube ∆ in Qm is divided into cubes ∆j for j “ 1, . . . , 2m. Then

max
j
gapJ,∆jq ď 2´magapJ,∆q

Proof. By the semiadditivity from below, we have that
ř

j Jp∆jq ď Jp∆q. But for all j, |∆j |
a “ |∆|a2´ma and then the

maximum being upper bounded by the sum, we get the result.

Lemma 22. Let s P N and let xj ą 0, yj ą 0 (j “ 1, . . . , s) be numbers such that

ÿ

j

xj ď 1,
ÿ

j

yj ď 1, xjy
a
j ě b pj “ 1, . . . , sq.

for some a ą 0 and b ą 0. Then b ď s´pa`1q.

Proof. This is a classical optimization problem that one can tackle with Lagrange multipliers. Indeed, we look for max b
satisfying the conditions of the lemma. Then one has to �nd the unique critical point of

b, pxjqj , pyjqj , pλjqj , α, β ÞÑ b`
ÿ

j

λjpxjy
a
j ´ bq ` αp1´

ÿ

j

xjq ` βp1´
ÿ

j

yjq

One has to verify the 3s` 3 equations

$

&

%

ř

j xj “ 1 pL1q
ř

j yj “ 1 pL2q
ř

j λj “ 1 pL3q

,

$

&

%

xjy
a
j ´ b “ 0 pL1,jq

λjy
a
j ´ α “ 0 pL2,jq

aλjxjy
a´1
j ´ β “ 0 pL3,jq

pj “ 1, . . . , sq.

For example from pL1,jq, pL2,jq we get that λjb “ αxj and then b “ α together with λj “ xj . In the same way, we get
that λj “ yj . Consequently, the sequences pxjqj , pyjqj and pλjqj are stationary so that @j, xj “ yj “ λj “ s´1. It gives
max b “ s´pa`1q and the result follows.
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11.2 A fundamental theorem for partitioning cubes

11.2.1 The decreasing behavior of Ga

In this section, we investigate the e�ect of the Slicing strategy over the decreasing behavior of the functional Ga. Since
the slicing is performed on all the cubes of `large' weight for Ga, we expect to see a decreasing e�ect on the Ga along the
successive re�nement of the partitions. A precise statement is as follows. For this purpose, we de�ne the quantities

@i ě 0, ni “ |Λi|

on which can directly see that n0 “ 1 and

ni`1 ď 2mni.

We de�ne

Si “ tj P t1, . . . , niu : gapJ,∆jq ě 2´maδiu and si “ |Si|

for the cubes that are sliced (or equivalently that satisfy (11.3)) at step i to obtain the partition Λi`1.

Lemma 23. We have the relation for any i ě 1,

ni ď 2m
i´1
ÿ

j“0

sj .

Proof. When a cube is sliced, then one cube disappear and 2m cubes are created. Since we do it for si cubes, we get
ni`1 ´ ni “ p2

m ´ 1qsi. Summing this last equality gives the result.

Theorem 27. Let a ą 0. Assume that the function J is semiadditive from below. Then there exists a constant C˚ “
C˚pa,mq (that do not depend on J) such that for all i ě 1,

GapJ,Λiq ď C˚n
´pa`1q
i . (11.4)

In particular, for C1 “ C1pa,mq “ 2mpa`1qC˚ then for all n P N˚, there exists a partition Λ of the cube Qm of size |Λ| ď n
and such that

GapJ,Λq ď C1n
´pa`1qJpQmq.

Proof. The second part on the theorem is a direct consequence of (11.4) so we only have to prove (11.4). For simplicity
of the notations, we note δi “ GapJ,Λiq in the following. The partition strategy and the quantitative result in Lemma 21
show that @i ě 0,

δi`1 ď 2´maδi. (11.5)

But using Lemma 22 for the quantities xj “ Jp∆jq, yj “ |∆j | over the class of cubes corresponding to Si and b “ 2´maδi,
we get

δi ď 2mas
´pa`1q
i (11.6)

Equations (11.5) and (11.6) together show that for any k ě i,

δk ď 2´pk´i´1qmas
´pa`1q
i

or again

si ď δ
´pa`1q´1

k ˆ 2´pk´i´1qmapa`1q´1

.

Summing those relations over i P t0, . . . , k ´ 1u and denoting q “ 2´mapa`1q´1

, we have

nk ď 2m
k´1
ÿ

i“0

si ď 2mδ
´pa`1q´1

k

k´1
ÿ

i“0

qi ď 2mδ
´pa`1q´1

k

8
ÿ

i“0

qi “ 2m
δ
´pa`1q´1

k

1´ q

Then δk ď p2
m{p1´ qqq´pa`1q ˆ n

´pa`1q
k which gives the result for the constant C “ p2m{p1´ 2´mapa`1q´1

qq´pa`1q.
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11.2.2 The one dimensional case

In this section, we see that Theorem 27 to the one dimensional case. The change is that a is allowed to take the value
0 in this case. We denote by I “ r0, 1q and for any x, y P r0, 1q such that x ă y and denote the semiadditive function
J taken on the half open intervals by Jrx, yq. By the semiadditive property, we see that the function φptq ÞÑ Jrt, yq is
non-increasing on px, yq and bounded. We de�ne

rJrx, yq “ lim
tÑx`

φptq.

This de�nition implies that rJrx, yq ď Jrx, yq.

Theorem 28. Assume that the function J is non-negative, semiadditive from below and continuous on the left which is

lim
tÑy´

Jrx, tq “ Jrx, yq.

Then, for any a ě 0 and any n P N, there exists a partition Λ of the interval with |Λ| ď n and

Gap rJ,Λq ď n´pa`1qJr0, 1q. (11.7)

Proof. We prove that theorem directly by induction on n. Without loss of generality, we assume that Jr0, 1q “ 1. The
case n “ 1 is direct. We now assume that (11.7) is veri�ed for a certain n ě 1. Using (11.7) is true for

J 1 : ∆ ÞÑ Jpx0∆q{Jr0, x0q,

we see that if the basis interval is r0, x0q then we get that

GapJ̃ ,Λq ď n´pa`1qxa0Jr0, x0q.

So de�ne the function φpxq “ Jr0, xq so that the function

x ÞÑ φpxq ´

ˆ

n

n` 1

˙a`1

x´a

as the sum of two non-decreasing functions is also non-decreasing. But since the limit at 0 of this function is ´8 if a ą 0
or ´n{pn`1q if a “ 0 and is positive at x “ 1 then the function changes sign at some value in p0, 1q. By the left continuity
of the function φ, there exists a point x0 P p0, 1q such that

φpx0q ď

ˆ

n

n` 1

˙a`1

x´a0 ď lim
xÑx`0

φpxq.

But then, by the induction hypothesis, we can divide r0, x0q into subintervals ∆1, . . . ,∆k with k ď n such that

max
i“1,...,k

gapJ̃ ,∆iq ď n´pa`1qxa0φpx0q ď pn` 1q´pa`1q.

By the fact that k ď n, we have the freedom to add one more subset to the family ∆1, . . . ,∆k to form a partition of r0, 1q.
Logically, we de�ne ∆k`1 “ rx0, 1q and we have to prove that gapJ̃ ,∆k`1q ď pn ` 1q´pa`1q to �nish the proof. Since
φpxq ` Jp∆k`1q ď 1, we have by taking the limit

lim
xÑx`0

φpxq ` J̃p∆k`1q ď 1.

So

J̃p∆k`1q ď 1´ lim
xÑx`0

φpxq ď 1´

ˆ

n

n` 1

˙a`1

x´a0 ď pn` 1q´pa`1qp1´ x0q
´a

where the last inequality is a simple analytic fact that is let as an exercise in Exercice 26 below. So we have proved that

gapJ̃ ,∆k`1q “ p1´ x0q
´aJ̃p∆k`1q ď pn` 1q´pa`1q

and the proof is �nished.

Exercice 26. Finish the proof of Theorem 28 by showing that for every x0 P p0, 1q, n P N and a ě 0, it holds that

1´

ˆ

n

n` 1

˙a`1

x´a0 ď pn` 1q´pa`1qp1´ x0q
´a.

Hint: Use the auxiliary function hpxq “ p1´ xq´a ` na`1x´a.
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11.3 Approximation of functions in W α
p pQ

mq

In this section, we justify why the polynomial functions are good candidates to approximate functions in Wα
p pQ

mq (hence
to be the center of balls in the entropy de�nitions). We use the fact that Sobolev spaces have a underlying Hilbert structure
given by the scalar product

u, v ÞÑ

ż

Qm
upxqvpxqdx.

Obviously, this quantity can be in�nite and this formula does not de�ne a proper scalar product. Nevertheless, if one
takes v in L8pQ

mq, then the scalar product of u PWα
p pQ

mq and v is well de�ned. The class of polynomials do belong to

L8pQ
mq and the projection Pku of u on the linear space formed by the polynomial functions pxiq|i|ďk “ px

i1
1 . . . ximm q|i|ďk

is uniquely de�ned by the equations

ż

Qm
xiPkupxqdx “

ż

Qm
xiupxqdx, @|i| ď k. (11.8)

When the cube Qm is replaced by any general cube ∆ Ă Rm, we denote P∆
k the corresponding operator. For a partition

Λ of the cube Qm, we denote by PΛ,k the function such that any restriction to a cube ∆ P Λ is equal to the polynomial
P∆
k . The regularity of the functions inside Wα

p pQ
mq is very dependent on the relative values of p, α and m as pointed out

by Theorem 37. We derive two di�erent results of polynomial approximation depending on the case of regularity.

Proposition 30. Let u PWα
p such that pα{m ą 1 and let n P N. Then, there exists a partition Λ of the cube with |Λ| ď n

and such that

}u´ Pα´1u}L8 ď Cn´
α
m }u}Wα

p

where the constant C only depends on α, p and m.

The proof is based on the following lemma that is based on the embedding theorem of Sobolev spaces that is recalled in
Corollary 14.

Lemma 24. Let ∆ be a cube in Rm and let u PWα
p p∆q. Then

}u´ P∆
α´1}L8p∆q ď C|∆|

α
m´

1
p }u}Lαp p∆q (11.9)

Proof. First of all, we consider the alternative Sobolev norm (see Section 19.1.3) given by

~u~Wα
p p∆q

“ }P∆
α´1u}Sα´1 ` }u}Lαp p∆q.

Since the linear projector P∆
α´1 is a projector, we have that P

∆
α´1pu´P

∆
α´1uq “ 0 so that }u}Lαp p∆q “ ~u´P

∆
α´1u~Wα

p p∆q
“

~u~Wα
p p∆q

. But by Proposition 40, this norm is equivalent to the regular norm }u}Wα
p p∆q

which implies that there exists
constants c and C such that

c}u}Wα
p p∆q

ď }u´ P∆
α´1u}Wα

p p∆q
ď C}u}Wα

p p∆q
.

Then, it is enough to prove that for any element of u PWα
p p∆q,

}u}L8p∆q ď C|∆|
α
m´

1
p }u}Lαp p∆q.

Let start with the canonical cube Qm. By Corollary 14, there exists a constant C such that

}u}L8pQmq ď C}u}Lαp pQmq

For a general cube ∆ “ x0 ` hQm, we de�ne the function vpxq “ uph´1px ´ x0qq. The homogeneity relation (11.1) and
the fact that the side h of the cube ∆ of volume |∆| is h “ |∆|1{m shows that

}u}L8p∆q “ }v}L8pQmq ď C}v}Lαp pQmq “ Cp|∆|´
1
m q

m
p ´α}u}Lαp p∆q

which �nishes the proof.

In the next result, we show how the partition scheme is adapted to the approximation of a function in Wα
p pQ

mq. The idea
is to follow the principles of Section 11.2.
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Proof of Proposition 30. Let Λ be a partition of the cube Qm and we denote by v “ PΛ,α´1u. For a x P Q
m, there exists

a cube ∆ P Λ such that x P ∆. In this cube the norm }u´ v}L8p∆q is controlled by Lemma 24 and we deduce that

sup
xP∆

|upxq ´ vpxq| ď C
´

|∆|
pα
m ´1}u}pLαp p∆q

¯
1
p

.

To �nishes the proof we use Theorem 27 to pass from a local control (over each ∆) to a global control of the supremum.
The quantity to control is then

max
∆PΛ

|∆|
pα
m ´1}u}pLαp p∆q

“: G pα
m
pJ,Λq

where we choose Jp∆q “ }u}pLαp p∆q
. This function is additive by the additivity of the integral. Theorem 27 applies and we

get that there exists a partition of size |Λ| ď n such that

G pα
m
pJ,Λq ď Cn´

pα
m }u}pLαp pQmq

which gives that }u´ v}L8pQmq ď Cn´
α
m }u}Lαp pQmq ď Cn´

α
m }u}Wα

p pQ
mq

The general case of uniform approximation by polynomials is the following result.

Theorem 29. Assume that p, α,m are such that pα{m ą 1. Let µ be a borelian measure on the cube Qm such that
µpQmq ď 1 and we denote by LppQ

m, µq the Lebesgue spaces associated with the measure µ. Let n P N˚. Then there exists
a partition Λ of the cube such that |Λ| ď n such that for every u PWα

p pQ
mq, we have

}u´ PΛ,α´1u}LqpQm,µq ď Cn´
α
m`

1
p´

1
q }u}Wα

p
if p ă q,

and

}u´ PΛ,α´1u}LqpQm,µq ď Cn´
α
m }u}Wα

p
if p ě q.

The constants only depend on p, q, α and m.

One can note that the exponent in n acquires an extra term 1{p that comes from that the partition construction does not
depend on the form of u. The term α

m ´
1
p is the same as in the embedding theorem and is the good estimate. The result

of Proposition 30 is better since the partition scheme is adapted to the speci�c function u.

Proof. We show the results for every q ě p since the case q ă p follows immediately from the case p “ q with Holder's
inequality. We proceed as in the proof of Proposition 30. Let Λ be a partition of the cube and denote v “ PΛ,α´1 then

}u´ v}qLqpQm,µq ď
ÿ

∆PΛ

sup
∆
|u´ v|qµp∆q ď C

ÿ

∆PΛ

|∆|p
α
m´

1
p qq}u}qLαp p∆q

µp∆q

ď C

˜

ÿ

∆PΛ

}u}qLαp p∆q

¸

max
∆PΛ

´

|∆|p
α
m´

1
p qqµp∆q

¯

ď C

˜

ÿ

∆PΛ

}u}pLαp p∆q

¸

q
p

max
∆PΛ

´

|∆|p
α
m´

1
p qqµp∆q

¯

“ C}u}qLαp pQmq
max
∆PΛ

´

|∆|p
α
m´

1
p qqµp∆q

¯

.

But max∆PΛ |∆|
p αm´

1
p qqµp∆q can be bounded using Theorem 27 with a “ pα{m ´ 1{pqq and Jp∆q “ µp∆q. Since the

function J does not depend on u, the partition is adapted to µ and works uniformly over all choices of u. The exponent
in n is then given by ´pa` 1q{q “ ´pα{m´ 1{pq ´ 1{q.

11.4 Entropy control

The approximation of each element of Wα
p by piecewise polynomial is the key ingredient to cover a bounded subset of

Wα
p . Indeed, the set of polynomial has �nite dimension and can be included inside the Euclidean set of its coe�cients.

However, considering all the possible polynomials PΛ,α´1 as the center of the balls in the covering lead to poor estimates.
In the following we re�ne the argument by splitting the set of interest in sets such that the corresponding partition in
the construction of the polynomials are equal up to some step. For that purpose, we �rst count the number of distinct
partitions that the process described in Section 11.2.
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11.4.1 Counting the partitions of the cube

In this section, we show how the partition can be regrouped in a way that the polynomials constructed later on those
partitions be alike. For a sequence of partitions pΛiqi that are successive extensions, we de�ne the

δi “ GapJ,Λiq and ni “ |Λi|

We have seen in the proof of Theorem 27, that for the partitions constructed in Section 11.2 we have that δi`1 ď 2´maδi.
The �rst step is to regularize the sequence δi so that its decreasing speed is of the order δ̃i`1 „ 2´maδ̃i.

Lemma 25. De�ne for all i the sequence

δ̃i “ C˚ min
0ďjďi

t2´ampi´jqn
´pa`1q
j u

where C˚ is the constant of Theorem 27. Then it holds that @i P N,

2´mpa`1qδ̃i ď δ̃i`1 ď 2´maδ̃i and δi ď δ̃i. (11.10)

Proof. By Theorem 27, δj ď C˚n
´pa`1q
j . But since we have that δi`1 ď 2´maδi, we have that @j ď i, δi ď 2´ampi´jqδj .

This gives that for all j ď i, δi ď C˚2´ampi´jqn
´pa`1q
j and so δi ď δ̃i. Also, for all i,

δ̃i`1 “ mint2´amδ̃i, C
˚n
´pa`1q
i`1 u (11.11)

so that we have immediately that δ̃i`1 ď 2´maδ̃i. For the other side, it is direct to see that 2´mpa`1qδ̃i ď 2´amδ̃i and

then it remains to prove that 2´mpa`1qδ̃i ď C˚n
´pa`1q
i`1 . Since the successive elements in the partitions pΛiqi are obtained

by extensions, we have that ni`1 ď 2mni. Then,

2´mpa`1qδ̃i ď 2´mpa`1qδi ď C˚2´mpa`1qn
´pa`1q
i ď C˚n

´pa`1q
i`1 .

We �x a number 0 ă η ă C˚. For a semi-additive function J , we de�ne the associated partition sequence pΛiqi“0,...,k such
that

δ̃k ď η ď δ̃k´1. (11.12)

We denote by LηapJq this sequence. If we denote J the set of all functions semiadditive from below with JpQmq ď 1, for
two elements J, J 1 P J , we de�ne an equivalence relation

J „
R
J 1 ô LηapJq “ LηapJ 1q

The following result upper bounds the number of di�erent classes for the relation R.

Lemma 26. Let Napηq the number of classes of equivalence given by relation R. Then there exists a constant C only
depending on a and m such that

log2Napηq ď Cη´pa`1q´1

Proof. Let pΛiqi“0,...,k “ LηapJq be a sequence of partition that correspond to at least one funcion J P J . Then

nk ď 2mnk´1 ď
(11.11)

2mpC˚δ̃´1
k´1q

pa`1q´1

ď
(11.12)

2mpC˚η´1qpa`1q´1

.

If we denote by N “ t2mpC˚η´1qpa`1q´1

u, we know that the �nal number of cubes nk ď N for all J . By decomposing N ,
we have the following decomposition

N “ 1`
k
ÿ

i“1

pni ´ ni´1q ` pN ´ nkq

of the integer N in a sum of non-zero integers except for the term pN ´ nkq this allowed to take the value 0. But the
number of decomposition of an integer N ´ 1 in positive integers is given by 2N´2 ˆ 2 (in our context, if the order of the
sequence of integers di�er, the decomposition is considered di�erent). [GIVE A SIMPLE PROOF IN THE APPENDIX]
We, now �x a certain sequence of integers pniqi“0,...,k such that nk ď N . We have to �nd all the possible sequences
pΛiqi“0,...,k with |Λi| “ ni. Given Λi, the following partition is completely determined by the set of all cubes ∆ that are
to be split at step i ` 1 which is exactly the set Si of cardinality si “ pni`1 ´ niqp2

m ´ 1q´1. Then, the numbers si are
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�xed. The possible choices of the set Si is
`

ni
si

˘

ă 2ni . Then, the total number of partitions corresponding to the sequence
pniqi“0,...,k is upper bounded by

2n0`n1`¨¨¨`nk´1 .

It remains to bound the sum n0 ` n1 ` ¨ ¨ ¨ ` nk´1 with respect to the precision parameter η. By de�nition of the δ̃ in
Lemma 25, we have that

@i ď k ´ 1, ni ď pC
˚δ̃´1
k´1q

pa`1q´1

2´pk´1´iqampa`1q´1

ď pC˚η´1qpa`1q´1

2´pk´1´iqampa`1q´1

.

Summing the previous inequality on i, we have that, for a constant C that only depends on a and m,

n0 ` n1 ` ¨ ¨ ¨ ` nk´1 ď Cη´pa`1q´1

.

The total number Napηq of classes is then upper bounded by the product of the 2N´1 cases for the choice of the sequence

pniqi and the Cη´pa`1q´1

cases for the choice of the partitions sequence for a given sequence of numbers ni. This gives

log2Napηq ď N ´ 1` Cη´pa`1q´1

ď 2mpC˚η´1qpa`1q´1

` Cη´pa`1q´1

ď C 1η´pa`1q´1

where the constant is only depending on a and m.

11.4.2 A general upper bound for the entropy in Sobolev spaces

In this section, we use all the machinery developed in the previous sections to handle upper bound the entropy of any
bounded set F inside Wα

p . As expected by the path taken so far, the main idea is to restrict the calculation of the entropy
of F to the entropy of piecewise polynomials.

Theorem 30 (Birman-Solomjak (1967)). Let F be a class of functions included in Wα
p pQ

mq that is bounded. We have
that for a constant that only depends on q,m and α,

Hpε,F , } ¨ }LqpQmqq ď Cε´
m
α (11.13)

where 1 ď q ď 8 in the case pα{m ą 1 and 1 ď q ď q˚ when pα{m ď 1 for q˚ “ p{p1´ pα{mq.



Chapter 12

M-estimation

The M-estimation (M for maximum) is a commonly used technique in statistics to de�ne estimators of the �best� kind for
a given problem. They are based on the minimization of some random criteria that measures the desired quality of the
estimation.

12.1 Introduction and notations

Let X1, . . . , Xn, X be i.i.d. random variables taking values in a set X of common distribution P . Let S denote the set of
parameters. In this chapter, S is assumed to be a subset of a metric set, so that it is possible to enroll S with a distance
d. A random criteria is a function

γn : S Ñ R˚`
t ÞÑ γnptq :“ γnpX1, . . . , Xn, tq

depending on the random variables X1, . . . , Xn.

Settings and M-estimator Once given the criteria γn, one is interested in �nding one parameter s P S that have the
best theoretical cost E rγnpsqs. The purpose of M-estimation is exactly to de�ne a random point that we hope to be close.

De�nition 13. We de�ne the following notions.

1. Let s be the target parameter de�ned as
s P argmintPS E rγnptqs .

2. We de�ne the M-estimator based on the risk function as

ŝ P argmintPS γnptq.

3. The cost of choosing the parameter t is given by

Rptq “ E rγnptqs

and the risk of the estimator is the quantity Rpŝq.

It has to be stated somewhere that a M-estimator ŝ is, obviously, depending on the set of parameters S and of the form
of the random criteria γn

Empirical Measure Most of the time, the criteria γnptq can be rewritten in the setting of empirical processes where a
sum of independent terms is considered. For any measure µ and any function f : X ÞÑ R integrable with respect to µ, we
de�ne

µf “ µpfq “

ż

X
fdµ.

Obviously, for any function f : X ÞÑ R integrable with respect to P , we have

Pf “ E rfpXqs

Pnf “
1

n

n
ÿ

i“1

fpXiq

where Pn “
1
n

řn
i“1 δXi is called the empirical measure.

83
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12.2 Examples

In the following examples, we remark that the random criteria γnptq takes the speci�c form Pnft for a good choice of ft.

Empirical mean and empirical median Estimating the mean and the median of a sample of random vectors taking
values in a set X “ Rk can be seen as a problem of M-estimation. The parameters are also elements of Rk then we set
S “ Rk.

• When γnptq “ Pnft where ftpxq “ py ´ tq
2, the target parameter s is simply the expected value E rXs.

• When ones uses ftpxq “ |y ´ t|, the minimizer is just the (a) median of X.

Exercice 27. Show that the minimum of E
“

pY ´ tq2
‰

is attained for t “ E rY s and show that E r|Y ´ t|s is attained for
t “ MedpY q.

Least square regression In this context, we assume that the space X takes the form X “ Z ˆ R for a measurable
space Z and that X “ pZ, Y q P Z ˆ R of law P and such that

Y “ mpZq ` σpZqε,

with E
“

Y 2
‰

ă 8 and σpZq ě 0. The noise term ε is suppose to be independent of Z and standardized (i.e. E rεs “ 0 and

E
“

ε2
‰

“ 1).

• The set of parameters is S “ L2pP q :“ ts : Z Ñ R ; E
“

s2pZq
‰

ă 8u.

• The cost function is γnptq “ Pnft where ftpxq “ py ´ tpzqq
2.

• The target m : z ÞÑ E rY |Z “ zs is called the regression function of Y by Z.

The estimator ŝ is the least square estimator (LSE).

Binary classi�cation The binary classi�cation deals with the problem of labeling a random variable Z by a number 0
or 1. The data points are, then, of the form Xi “ pZi, Yiq where Zi P Z and Yi P t0, 1u. Then X “ Z ˆ t0, 1u and,

• The set of parameters is S “ ts : X Ñ t0, 1u measurableu.

• The cost function is γnptq “ Pnft where ftpxq “ 1y‰tpzq.

• The target s˚pzq “ 1ErY |Z“zsě1{2 is called Bayes classi�er.

The estimator ŝ is the binary classi�er.

Maximum likelihood We assume that X has a density f with respect to a measure µ,

f “
dP

dµ

and that plog fq` is integrable with respect to P . Then:

• The set of parameters is S “ ts : X Ñ R` ;
ş

X sdµ “ 1 and P plog sq` ă 8u.

• The cost function is γnptq “ Pnft where ftpxq “ ´ logpspxqq.

• The target f is the density of X.

The estimator ŝ is then the maximum likelihood estimator (MLE).
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Figure 12.1: An example of MLE done by hands.

12.3 Theoretical study

For simplicity, we derive the following study in the context seen above, where the cost function γnptq takes the form of
Pnft. The choice of the form of the function ft depends on the statistical context. Hence the theoretical cost E rγnptqs
takes the form Pft. When one wants to study the deviation between the target s de�ned as the minimizer of Pft and
the M-estimator ŝ de�ned as the minimizer of Pnft, it is a good idea to control the di�erence Pnft ´ Pft. This enters
naturally in the context of empirical process theory.

De�nition 14. Let F be a subset of L1pP q. The functional

Φ: F Ñ R
f ÞÑ Pnf ´ Pf

also denoted ppPn ´ P qfqfPF is called the empirical process over the class F .

This point of view is the one taken by numerous authors for a general study of M-estimators on metric sets of parameters.
The interested reader is advised to take a look at [16], [17] or [10].

12.3.1 Consistency of M-estimators

Bounding the excess risk As de�ned earlier, the quality of the M-estimator is measured by its risk Rpŝq. A �rst step
to prove the consistency of the estimator ŝ is to control the so-called excess risk

Rpŝq ´Rpsq.

The convergence towards 0 of Rpŝq ´Rpsq is not directly linked to the convergence of ŝ towards s. Indeed, if the function
R has numerous local minimum then tracking the convergence of ŝ becomes hard even though one has Rpŝq´Rpsq Ñ 0 as
nÑ `8. In the literature, many author do not bridge this step and only look for the asymptotic behavior of the excess
risk of the estimator. If one wants to overcome this issue, several leads are possible. The most common one may be to
assume convexity or strong convexity.

De�nition 15 (Strong convexity). Let µ ą 0, U be a convex open subset of Rk and f : U Ă Rk Ñ R be a di�erentiable
function. We say that a function is µ-strongly convex if one of the following equivalent conditions is veri�ed.

1. fpyq ě fpxq `∇fpxqT py ´ xq ` µ
2 }x´ y}

2 for any x, y P U .

2. The function gpxq “ fpxq ´ µ
2 }x}

2 is convex.

3. p∇fpxq ´∇fpyqqT px´ yq ě µ}x´ y}.

Exercice 28. Prove the equivalences in De�nition 15.
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The equivalences in De�nition 15 still hold when f is assumed to have sub-gradients. See the details in [3, Section 9.1.2].
The other option is to assume that for a distance d de�ned on the set S of parameters, we have

ηdpt, sq2 ď Rptq ´Rpsq, @t P S

for a positive constant η. The power 2 in the previous inequality is arbitrary but is often chosen in the literature. In the
sequel, we do not comment more on this fact and focus on proving consistency results only for the excess risk Rpŝq´Rpsq.
The following lemma encodes a crucial decomposition of the risk.

Lemma 27. Let @t P S, Rnptq “ γnptq and assume that is satis�es

sup
tPS
|Rnptq ´Rptq|

P
ÝÑ 0,

then Rpŝq ´Rpsq
P
ÝÑ 0.

Proof. We have

0 ď Rpŝq ´Rpsq

“ rRpŝq ´Rnpŝqs ` rRnpŝq ´Rnpsqs ` rRnpsq ´Rpsqs

ď rRpŝq ´Rnpŝqs ` rRnpsq ´Rpsqs

ď 2 sup
tPS
|Rnptq ´Rptq|

P
ÝÑ 0



Chapter 13

Model Selection

We are in the context when the quantity to estimate is some complex object such a graph, a function, etc... If we take the
case of density estimation as a generic example for the context, one has to determine a objective function inside a possibly
enormous set of functions (think to all continuous function from R to r0, 1s for example). Hence, a natural strategy is to
reduce the set of possible solution at the price of possibly deteriorating the quality of the estimation. We put it in context
in the following. This chapter is inspired from the thesis of Adrien Saumard [12].

13.1 Introduction

Let X1, . . . , Xn be i.i.d random variables taking values in a set X . Let S be a set (possibly very complex) of parameters
(DEFINE this). We also de�ne a random criteria γn sometimes referred as contrast as a function of the data for measuring
the quality (DEFINE that) of a parameter t P S. More concretely, let

γn : S Ñ R˚`
t ÞÑ γnptq :“ γnpX1, . . . , Xn, tq

be the cost (or risk) function. In many cases, the cost function takes the form of a sum of independent random quantities
γnptq “ n´1

ř

i cpXi, tq in such a way that γnptq can be rewritten in the context of empirical processes theory γnptq (see
De�nition REF). We, now, introduce the important vocabulary in the setting of model selection.

De�nition 16. We de�ne the following notions.

1. The empirical cost for a parameter t P S is γnptq.

2. The cost or risk is E rγnptqs.

3. A subset S Ă S is called a model. When one has access to a class of such subsets pSmqmPM, we also call model the
index m of the model Sm.

4. Let s be the target parameter de�ned as
s P argmintPS E rγnptqs .

It is the theoretical benchmark for the problem of optimizing the cost. For each model m PM we de�ne the projected
target as a minimizer of the cost on the model Sm,

sm P argmintPSm E rγnptqs .

5. For each model m, we de�ne the associated M-estimator based on the risk function as

ŝm P argmintPSm γnptq.

6. Finally, among the modelsM we choose the optimal model for which the cost of its M-estimator is minimal,

m˚ P argminmPM E rγnpŝmqs (13.1)

Question: If one have access to a class of models pSmqmPM, how can one choose a model m and an estimator s̃ as an
element of the model Sm such that it is a good estimator of s?
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Selecting among M-estimators In the de�nitions 5. and 6., we reduced the diversity of estimator we consider.
Indeed, we only assume that we construct a M -estimator corresponding to each model Sm. As a result, the estimator s̃
is to be chosen among the family pŝmqmPM as we will develop further in the following.

Target model The model m˚ or Sm˚ give an associated estimator ŝm˚ having the best theoretical performance (in
the sense of (13.1)) among the class of M -estimators pŝmqmPM. In that sense, sm˚ is the best estimator to estimate the
target s. However, it is not rigorously an estimator since it still depends on some parameter of the problem through m˚.
This comes from that the minimization in (13.1) uses the true mean operator.

Avoiding a confusion : Eγ r¨s versus E r¨s In the following, we will have to distinguish between two kind of alea.
The empirical cost is one source of randomness and an estimator in some modelM gives another source. We attract the
attention of the reader on the fact that as a function of a (non-random) parameter t, E rγnptqs “: Eγ rγnptqs is no more
random. Then, when one considers a estimator ŝm,

Eγ rγnpŝmqs is a random variable

E rγnpŝmqs is a deterministic number

since the second quantity is simply the expected value of the random variable γnpŝmq. The reader has to be careful that
we do not have E rEγ rγnpŝmqss “ E rγnpŝmqs but we obviously have that Eγ rγnptqs “ E rγnptqs for any deterministic point
t P S.

Loss functions In order to quantify the goodness of an estimator, one has to de�ne a non-negative quantity that
quanti�es the gap between an estimated parameter and s. In the literature, there are two natural and common choices.
We de�ne the deterministic loss function `det of an estimator s̃ around the target point s by

`detps̃, sq “ E rγnps̃qs ´ E rγnpsqs .

We de�ne the random loss function `ran as

`ranps̃, sq “ Eγ rγnps̃qs ´ E rγnpsqs .

In each section, we specify which loss is considered and we will use the generic notation ` for both cases since there will
not be confusion. Note that, for both cases, the projected target sm is a minimizer on Sm of `pt, sq. At this point, it is
clear that a model Sm too �small� is not likely to embed properly the problem as the target s will be far from its closest
point in Sm and then one has to look for a rich enough model to hope to get a good estimator s̃ of the target.

Over-�tting At �rst sight, the question seems to be answered by a direct minimization of the empirical cost by

m̂ P argminmPM γnpŝmq (13.2)

which will have the tendency to always choose the biggest (in the sense of inclusion) model Sm among the possibilities.
However, a �big� model have the tendency to su�er a negative bias. Indeed, calling γnptq “ γnptq ´ Eγ rγnptqs and using

Eγ rγnpŝmqs “ Eγ rγnpsmqs ` Eγ rγnpŝmq ´ γnpsmqs
looooooooooooomooooooooooooon

ě0

where the operator Eγ only operates on γn and not on ŝm, and

γnpŝmq “ γnpsmq ´ pγnpsmq ´ γnpŝmqq
looooooooooomooooooooooon

ě0

one can write γnpŝmq “ γnpsmq ´ pγnpsmq ´ γnpŝmqq. Since the point sm is not random, γnpsmq is centered (or without
bias). Nevertheless, the term γnpsmq ´ γnpŝmq is non-negative and then

E rγnpŝmqs ď 0. (13.3)

This can be interpreted as the fact that the minimization in (13.2) introduces a negative bias so that γnpŝmq is too
small compared to its cost E rγnpŝmqs. This occurs in the over-�tting phenomena using a model with too much de-
tails/parameters.

Practice 1. BUILD AN EXAMPLE TO COMPUTE OVERFITTING

Hence the term that control the bias of the over-�tted estimator is γnpsmq ´ γnpŝmq. This bias is controlled by the
complexity (the richer the more complex), of the model m chosen to build the estimator.
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Figure 13.1: A typical problem of underspeci�ed (left) vs adapted (center) vs over-�tting (right)

13.1.1 A solution through penalization

A solution to overcome the issue of over-�tting (negative bias) is to correct the estimator by a slightly modi�ed minimization
by adding a term of penalization of a model.

De�nition 17. A penalization on the class of models pSmqmPM is a function pen :MÑ R`. We allow penpmq to be a
random variable depending on the data X1, . . . , Xn.

The new estimator is then de�ned as a minimPseizer of

m̂ P argminmPMtγnpŝmq ` penpmqu. (13.4)

For clarity in the notations, from now on, we denote by s̃ the selected estimator using (13.4) estimator ŝm̂.

Ideal penalizations

We de�ne the ideal penalizations

peniddetpmq “ E rγnpŝmqs ´ γnpŝmq (13.5)

penid
ranpmq “ Eγ rγnpŝmqs ´ γnpŝmq “ ´γnpŝmq. (13.6)

In practice, penid cannot be used to tune the estimator since it depends on theoretical quantities such that the true mean
of γnpŝmq. Assume for a second that we choose pen “ peniddet, then it is clear that m̂ “ m˚ and this choice would achieve
the prefect estimator ŝm˚ .

13.1.2 A good class of results: Oracle bounds

The purpose of this section is to de�ne properly the form of the results that one may want to develop. One is usually
interested in proving that the estimator in question satisfy the same kind of guaranties than the best estimator provided
in the class pSmqmPM. We will give at least two di�erent mathematical meaning of this sentence. Since the calculations
on `ran and `det are similar, we will give a uni�ed notation ` for both loss functions and denote by E r¨s the associated
expectation that is either E or Eγ depending on the case.

Oracle bounds We will be looking for bounds of the form

`ps̃, sq ď C inf
mPM

`pŝm, sq `Dev “ C`pŝm˚ , sq `Dev (13.7)

for C a positive constant. A result as (13.7) is called an oracle bound. In other words, we ask that the desired estimator
s̃ is not worse than a constant times the best theoretical choice ŝm˚ . The Equation (13.1) has to be understood as a
deterministic bound for `det and the term Dev is a deterministic deviation whereas, in the case `ran, the bound holds in
expectation or high probability and the deviation term is allowed to be a random quantity. Oracle bounds can also take
the form of

`ps̃, sq ď C inf
mPM

p`psm, sq ` penpmqq `Dev1 (13.8)

where the in�mum describes the best possible projection on Sm weighed by the penalization term.
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A generic calculation We have, from (13.6), the following calculations

`ps̃, sq “ E rγnps̃qs ´E rγnpsqs

“ γnps̃q ` penidpm̂q ´E rγnpsqs

“ γnps̃q ` penpm̂q ` ppenid´penqpm̂q ´E rγnpsqs

ď γnpŝmq ` penpmq ` ppenid´penqpm̂q ´E rγnpsqs (13.9)

The next step concerns the bound on γnpŝmq. It is actually possible to derive two kind of results that we detail in the
next two paragraphs. Each strategy lead to di�erent form of oracle bounds.

First solution The �rst solution is to write γnpŝmq as

γnpŝmq “ ´penidpmq `E rγnpŝmqs .

and then
`ps̃, sq ď `pŝm, sq ` ppen´ penidqpmq ` ppenid´penqpm̂q (13.10)

The goal of the penalization step is, then, to look for good approximation of the ideal penalization penid by pen over the
models m PM.

Second solution The second solution consists in bounding γnpŝmq in a direct manner thanks to the de�nition of the
estimator ŝm. Starting again from (13.9) and using

γnpŝmq ď γnpsmq,

the bound on `ps̃, sq becomes

`ps̃, sq ď `psm, sq ` penpmq ` γnpsmq ` ppenid´penqpm̂q (13.11)

We see that when one is able to �nd a penalization close to the ideal penalization, one can hope to get an oracle inequality
as (13.7). For example, if one can control uniformly the deviation between penid and pen with high probability,

penidpmq ď penpmq ď penidpmq ` C inf
mPM

`pŝm, sq (13.12)

we get
`ps̃, sq ď p1` Cq inf

mPM
`pŝm, sq

with high probability. An ideal context is when one is able to de�ne a penalization such that, with high probability,

|penpmq ´ penidpmq| ď ε inf
mPM

`pŝm, sq (13.13)

so that

`ps̃, sq ď
1` ε

1´ ε
inf
mPM

`pŝm, sq

which is asymptotically optimal if εÑ 0 as nÑ8.



Chapter 14

Extra de�nitions

14.0.1 Sumable familly

De�nition 18. Let pE, } ¨ }q a normed vector space. We say that a family paiqiPI of elements of E is sumable if there
exists an element S of E such that @ε ą 0, DJε a �nite subset of I such that @J �nite Ă I,

J Ě Jε ùñ

›

›

›

›

›

ÿ

iPJ

ai ´ S

›

›

›

›

›

ď ε.

Then S is unique and we call it the sum of the sumable family ai.

Proposition 31. If the elements ai are non-negative, then

paiqiPI is sumable ô
Ją0 :“ ti P I : ai ‰ 0u is at most countable
and the serie

ř

iPJą0
ai is convergent.

Proof. Simply note that for any ε ą 0, the set ti : ai ą 2εu is �nite since it is included in Jε. Then we have that

ti : ai ‰ 0u “
ď

nPN
ti : ai ą

1

n
u.

This is actually possible to adapt the proof to get the result for the general sequence paiq where the result on the serie is
that it is commutatively convergent i.e. that any permutation of the terms lead to the same sum.

14.0.2 Processes

De�nition 19. A modi�cation of a process pXtqtPT is a process pX̃tqtPT such that

P
´

@t, Xt “ X̃t

¯

“ 1.
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Chapter 15

Functional Analysis

15.1 Lemmas

We give here the proofs of some technical results.

Lemma 28. Let a1, . . . , an and b1, . . . , bn be complex numbers such that @i, |ai| ď 1 and |bi| ď 1. Then

|a1a2 . . . an ´ b1b2 . . . bn| ď
n
ÿ

i“1

|ai ´ bi|.

Proof. It is possible to rewrite a1a2 . . . an ´ b1b2 . . . bn as

a1a2 . . . an ´ b1b2 . . . bn “a1a2 . . . an ´ a1a2 . . . an´1bn

` a1a2 . . . an´1bn ´ a1a2 . . . an´2bn´1bn

` . . .

` a1b2 . . . bn ´ b1b2 . . . bn

Then
|a1a2 . . . an ´ b1b2 . . . bn| ď |an ´ bn| ` ¨ ¨ ¨ ` |a1 ´ b1|

since the complex numbers are all of modulus less or equal to 1.

Lemma 29. For any pair of positive numbers a and b, we have that for any p ě 1,

pa` bqp ď 2p´1pap ` bpq

Proof. Use the convexity of x ÞÑ xp between the points a and b with λ “ 1´ λ “ 1{2.

Lemma 30. For any complex z such that <pzq ď 0, we have

|ez ´ 1´ z| ď
|z|2

2

Proof. By the Taylor-Young formula, we see that

|ez ´ 1´ z| “

ˇ

ˇ

ˇ

ˇ

ż 1

0

pt´ 1qz2etzdt

ˇ

ˇ

ˇ

ˇ

ď |z|2
ż 1

0

p1´ tqdt “
|z|2

2

where we used that |etz| ď 1, by the fact that <pzq ď 0.

Lemma 31. Let I be an open interval of R and let c : I Ñ R be a convex function. Then we have the following facts

a) c is continuous on I.

b) For all x P I, c has a left derivative c1lpxq and a right derivative c1rpxq such that c1lpxq ď c1rpxq.

c) Fix any v P I then for all D P rc1lpvq, c
1
rpvqs, we have that @x P I, cpxq ě Dpx´ vq ` cpvq.

d) There exists two sequences panqn and pbnqn of reals such that

@x P I, cpxq “ sup
n
panx` bnq.

93



94 CHAPTER 15. FUNCTIONAL ANALYSIS

Figure 15.1: Inequality (15.1)

Proof. If one takes u ă v ă w elements of I, we have that

∆u,v ď ∆u,w ď ∆v,w where ∆x,y “
cpyq ´ cpxq

y ´ x
. (15.1)

It is obvious to deduce that ∆x,y is increasing in both x and y. Now let v0 P pu,wq �xed. So

|Cpvq ´ Cpv0q| “ |∆v0,v||v ´ v0| ď maxt|∆v0,w|, |∆u,v0 |u|v ´ v0| ÝÑ
vÑv0

0

and aq is proved. From (15.1), we prove that

c1lpvq “ lim
uÒv

∆u,v ď lim
wÓv

∆v,w “ c1rpvq.

The limits exists since the limits are de�ned for increasing (resp. decreasing) and upper bounded (resp. lower bounded)
functions. Let D P rc1lpvq, c

1
rpvqs and let x P I. If x ě v, we have that D ď c1rpvq ď ∆v,x “ pcpxq ´ cpvqq{px ´ vq. The

case x lev is obtained symmetrically. To prove dq, we consider the point cq for all q P I XQ where we choose for example
Dq “ pc

1
lpqq ` c

1
rpqqq{2 and we de�ne

fpxq “ sup
qPIXQ

pDqpx´ qq ` cpqqq.

Now by density one can choose pqnqn a sequence of rationals in I such that qn Ñ x. Then,

cpxq “ lim
nÑ8

pDqnpx´ qnq ` cpqnqq ď sup
qPIXQ

pDqpx´ qq ` cpqqq “ fpxq ď cpxq.

We have c “ f and since I XQ is countable, one can renumerate the elements in a sequence.

15.2 Basic facts on integrable functions

Proposition 32. Let f ě 0 be an integrable function, then for any ε ą 0, there exists δ ą 0 such that

@F P BpRq, P pF q ď δ ùñ

ż

fpxq1fpxqPF ď ε.

Proof. Assume that the conclusion is false, then, there exist ε0 and a sequence of sets pFnqn such that

P pFnq ď 2´n and

ż

fpxq1fpxqPFn ą ε0.

De�ning, F “ lim supFn, we get from Borel-Cantelli lemma that P pF q “ 0. However, reverse Fatou lemma shows that
ż

fpxq1fpxqPF ą ε0

but this is impossible since the integration of over a event of probability 0 is always 0. The absurdity of the assumption
gives the result.

Corollary 9. Let f ě 0 be an integrable function, then
ż

fpxq1|fpxq|ątdx ÝÑ
tÑ8

0.
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15.3 Basic properties and Fourier transform

Fact 1. The convolution between two measures given by

µ ‹ νpAq “

ż

RkˆRk
1x`yPAdµpxqdνpyq

is a probability measure.

Proof. Obviously, µ ‹ νpRkq “ 1. Let A1, . . . , An, . . . be a countable family of disjoints elements of the borelian σ-algebra.
Then one has that

1Yiě1Ai “
ÿ

iě1

1Ai

which implies µ ‹ νpYiě1Aiq “
ř

iě1 µ ‹ νpAiq, by linearity of the integral.

We recall proposition 7.

Proposition 33. For µ and ν two probability measures,

• }Fµ}8 ď 1.

• Fpµ ‹ νq “ pFµq ˆ pFνq.

Proof. The �rst fact is obvious since the integrand has a modulus bounded by 1. For the second point, we see that for
any integrable function f ,

ż

Rk
fpzqdpµ ‹ νqpzq “

ĳ

RkˆRk

fpx` yqdµpxqdνpyq.

This can be seen by approximation of positive functions by simple functions. Then

Fpµ ‹ νqpξq “
ż

Rk
expp´iz ¨ ξqdpµ ‹ νqpzq

“

ĳ

RkˆRk

expp´ipx` yq ¨ ξqdµpxqdνpyq

“

ˆ
ż

Rk
expp´iz ¨ ξqdµpzq

˙ˆ
ż

Rk
expp´iy ¨ ξqdνpyq

˙

“ pFµpξqqpFνpξqq

Modulus of continuity Let g : Rk Ñ R be a function. Its modulus of continuity wpg, x, δq in x is a function taking
values in r0,`8s de�ned by

wpg, x, δq “ sup
yPRk:}x´y}ďδ

|gpyq ´ gpxq|.

By de�nition, it can be seen that
g is continuous at xô lim

δÑ0
wpg, x, δq “ 0.

Regularizing sequence We say that a sequence pφnqnPN of functions on Rk is a regularizing sequence if

1. For all n, φn ě 0.

2. For all n,
ş

Rk φnpxqdx “ 1.

3. For every ε ą 0,
ş

Bp0,εqc
φnpxqdx ÝÑ

nÑ8
0.

Proposition 34. Let 1 ď p, q ă 8 such that p´1 ` q´1 “ 1. Let φn be a regularizing sequence of functions in LqpRkq.
Then, for any f P LppRkq, we have that

f ‹ φn ÝÑ
nÑ8

f pin LppRkqq.

To prove that fact, we begin with a stronger case.
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Lemma 32. For a function g in L8pRkq continuous at x, we get

g ‹ φnpxq ÝÑ
nÑ8

gpxq

Proof. Using the fact that φn is of total mass 1 by de�nition, we can write for any δ ą 0,

g ‹ φnpxq ´ gpxq “

ż

Rk
rgpx´ yq ´ gpxqsφnpyqdy

“

ż

Bp0,δq

rgpx´ yq ´ gpxqsφnpyqdy `

ż

Bp0,δqc
rgpx´ yq ´ gpxqsφnpyqdy

ď wpg, x, δq ` 2}g}8

ż

Bp0,δqc
φnpyqdy

Now, by continuity, take δ ą 0 su�ciently small to get wpg, x, δq ď ε{2 and then take n large enough to have the second
term smaller than ε{2 as well. This �nishes the proof.

We are now able to prove Proposition 34.

Proof of Proposition 34. Since the family of regularizing functions φn are in LqpRkq, the functions f ‹φn are well de�ned.
Then by Jensen's inequality,

|pf ‹ φnqpxq ´ fpxq| ď

ż

Rk
|fpx´ yq ´ fpxq|pφnpyqdy.

Integrating in x both sides and using Fubini's theorem (everything is positive) we get that

}pf ‹ φnq ´ f}
p
p ď

ż

Rk
}fy ´ f}

p
p φnpyqdy, (15.2)

where fy holds for the function x ÞÑ fpx´ yq. De�ne gpyq “ }fy´ f}
p
p, then it is a continuous bounded function such that

gp0q “ 0. Hence, looking at the right and side of Equation (15.2) as g ‹ φnp0q we get, by Lemma 32, that it converges to
0 as nÑ `8.

15.4 Distribution functions and simple functions

De�nition 20. A simple function is a function f such that there exists a �nite number n of real values λ1, . . . , λn and of
measurable sets A1, . . . , An such that

f “
n
ÿ

i“1

λi1Ai

De�nition 21. A function de�ned on an �nite interval I “ ra, bs is said to be absolutely continuous on I, if @ε ą 0,
Dδ ą 0 such that @n and every �nite familly of intervals pα1, β1q, pα2, β2q, . . . , pαn, βnq in I such that

n
ÿ

i“1

pβi ´ αiq ă δ,

we have,
n
ÿ

i“1

|fpβiq ´ fpαiq| ă ε

This de�nition implies the important,

Theorem 31. Let I “ ra, bs and f : I Ñ R a non decreasing and absolutely continuous function. Then, f is almost surely
di�erentiable on I, is in L1pRq and

fpxq ´ fpaq “

ż x

a

f 1ptqdt @x P ra, bs.

Proof. This can be found in Rudin [11, Theorem 7.18]

We have the useful lemma:
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Lemma 33. Let µ be a probability measure on X and let f :Ñ r0,`8s a measurable function. Let φ : r0,`8q Ñ r0,`8s
be a monotone function, absolutely continuous on r0, T s for any T ă `8 and such that φp0q “ 0, then

ż

X
pφ ˝ fqdµ “

ż `8

0

µtf ą tuφ1ptqdt (15.3)

Proof. Since φ is absolutely continuous, it is almost surely di�erentiable. Now take a simple function f de�ned on X and
let Et “ tx P X : fpxq ą tu. The set Et is measurable since it is a �nite union of rectangles, then

µtf ą tu “ µpEtq “

ż

X
1fpxqątdµpxq

and, by Fubini,
ż `8

0

µtf ą tuφ1ptqdt “

ż

X
dµpxq

ż `8

0

1fpxqąt φ
1ptqdt.

But the right hand side integral can be re-written in

ż `8

0

1fpxqąt φ
1ptqdt “

ż fpxq

0

φ1ptqdt “ φpfpxqq.

We end the proof by a classical density argument to insure the validity of (15.3) for any measurable function.

A special case of Lemma 33 is the following result.

Corollary 10. For any non negative random variable X,

E rXs “
ż `8

0

P pX ą tq dt.

We draw the attention of the reader to the fact that the integral can also be written

ż `8

0

P pX ě tq dt (15.4)

since integration on the open p0,`8q or on r0,`8q are equivalent for the Lebesgue measure dt.

Proof. Apply Lemma 33 for f, φ both equal to the identity function.

15.5 Dominated convergence theorem

We recall rapidly the dominated convergence theorem that we reduce into (DOM) anywhere else in the notes. In the sequel
of this section, we denote by L1pX , µq the set of integrable functions on the measure space pX , µq. When convenient, we
adopt the notation

µpfq “

ż

X
fpxqdµpxq.

15.5.1 Dominated convergence

Theorem 32 (Dominated convergence (DOM)). Let pfnqnPN be a sequence of measurable functions. Assume that for any
x P X , fnpxq Ñ fpxq for f a measurable function. Assume also that there exists a non-negative function g P L1pX , µq
such that,

|fnpxq| ď gpxq, @x P X ,@n P N.

Then,

fn
L1
ÝÑ f in L1pX , µq,

and then
ż

X
fnpxqdµpxq ÝÑ

nÑ8

ż

X
fpxqdµpxq
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Proof. This theorem is a direct consequence of Fatou's lemma. Taking the limit in inequations, we see that |f | ď g and
then |fn ´ f | ď 2g. The reverse Fatou Lemma gives

lim supµp|fn ´ f |q ď µplim sup |fn ´ f |q “ µp0q “ 0.

This implies the convergence L1. Then, by Jensen inequality,

|µpfnq ´ µpfq| ď µp|fn ´ f |q ÝÑ
nÑ8

0.

One can notice that the only tool used in the proof is the reverse Fatou lemma. It is then immediate to show the following
corollary that study the case of convergence in probability of the sequence of integrated random variables.

Corollary 11 (Dominated convergence (P version)). Let pXnqn be a sequence of random functions such that for any x,

Xnpxq
P
ÝÑ Xpxq and such that there exists a random function Y , integrable with respect to a measure µ such that @n,

|Xn| ď Y . Then
ż

Xnpxqdµpxq
P
ÝÑ

ż

Xpxqdµpxq.

Proof. We follow the proof of Theorem 32 with the additional use of reverse Fatou lemma,

lim supP pµp|Xn ´X|q ě εq ď P plim supµp|Xn ´X|q ě εq ď P pµplim sup |Xn ´X|q ě εq “ P pµp0q ě .εq “ P p0 ě εq “ 0.

The reader may be confused by the �rst inequality. We used reverse Fatou for the functions 1µp|Xn´X|qěε and the fact
that for any sequence of random variables pZnq,

lim sup1Zněε “ lim
nÑ8

sup
kěn

1Zkěε “ lim
nÑ8

1supkěnpZkqěε
“ 1 lim

nÑ8
supkěnpZkqěε

where the last equality is clear since the sequence psupkěnpZkqqn is monotone.

Lemma 34 (Sche�é). Assume that fn and f are non-negative functions in L1pX , µq and suppose that fn Ñ f a.e. Then
ż

|fn ´ f |dµ ÝÑ
nÑ8

0 if and only if

ż

fndµ ÝÑ
nÑ8

ż

fdµ

Proof. The direct sense is obvious. For the reverse, assume that

µpfnq ÝÑ
nÑ8

µpfq.

First, one can notice that pfn´fq
´ ď f ´fn ď f by non-negativity of fn and then (DOM) implies that µppfn´fq

´q Ñ 0.
For the positive part,

µppfn ´ fq
`q “ µppfn ´ fq1fněf q “ µpfnq ´ µpfq ´ µppfn ´ fq1fnăf q

and |µppfn ´ fq1fnăf q| ď |µppfn ´ fq
´q| Ñ 0. Then, µppfn ´ fq

`q Ñ 0 and

µp|fn ´ f |q “ µppfn ´ fq
`q ` µppfn ´ fq

´q Ñ 0.

Sche�é Lemma have an important consequence for density functions associated with a probability measure P .

Corollary 12. The almost sure convergence of densities imply convergence in L1pX , P q.
Proof. Use Sche�é Lemma with the 'if' part since @n, P pfnq “ 1 “ P pfq.

The dominated convergence theorem is useful when the random variables are uniformly bounded by some constant K. In
this particular case, the weaker convergence (in probability) can be assumed instead of the almost sure convergence. The
following result will be used in the proof of Theorem 2.

Lemma 35 (Bounded convergence). Assume that Xn
P
ÝÑ X and that there exists a positive constant K such that almost

surely, @n, |Xn| ď K, then
E r|Xn ´X|s ÝÑ

nÑ8
0.

Proof. The random variableX is also bounded in probability byK. Indeed, |X| ď |X´Xn|`|Xn| ď |X´Xn|`K, we have
that P p|X| ą K ` εq ď P p|Xn ´X| ą εq Ñ 0. Hence, P p|X| ą K ` εq “ 0,@ε ą 0 which means that P p|X| ď Kq “ 1.
By conditioning,

E r|Xn ´X|s “ E
“

|Xn ´X|1|Xn´X|ąε
‰

` E
“

|Xn ´X|1|Xn´X|ďε
‰

ď 2KP p|Xn ´X| ą εq ` ε.
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15.5.2 Fatou Lemma

In the following, we denote by an Ò a, the simultaneity of an Ñ a and an is increasing. (GIVE A GOOD LOCATION)

Lemma 36 (Fatou). For a sequence of non-negative measurable function pfnqnPN, we have that,

µplim inf fnq ď lim inf µpfnq.

A simple way to remember the order between
ş

and lim inf, one of my teacher gave me the simple trick based on the lexical
ordering : il ď li where l stands for the limit and i stands for the integral. This is interpreted as

ş

lim inf ď lim inf
ş

.

Proof. De�ne the sequence pgkqk by,

gk “ inf
něk

fn.

The sequence is well de�ned as a in�mum of a sequence of non-negative numbers. By de�nition of pgkqk,

gk Ò lim inf fn,

and for any n ě k, fn ě gk, so that µpfnq ě µpgkq and then,

µpgkq ď inf
něk

µpfnq.

Since pgkq is non-decreasing, we can apply (MON) to get that

µplim inf fnq “ µplim
k
gkq

pMONq
“ lim

k
µpgkq ď lim

k
inf
něk

µpfnq “ lim inf µpfnq.

Lemma 37 (Reverse Fatou). Let pfnqn be a sequence of measurable functions such that, for any n, fn ď g with µpgq ă `8,
then

µplim sup fnq ě lim supµpfnq

Proof. Apply Fatou Lemma for pg ´ fnqn.

15.6 The Monotone convergence theorem

15.6.1 Monotone convergence for measures

We begin with the monotone properties of measures. For measurable sets pFnqn and F , the notation Fn Ò F means
@n, Fn Ď Fn`1 and

Ť

Fn “ F and Fn Ó F means @n, Fn`1 Ď Fn and
Ş

Fn “ F .

Lemma 38 (Monotone convergence for measures). Let pX , µq be a measure space, then

1. If pFnqn are measurable sets such that Fn Ò F , then µpFnq Ò µpF q.

2. If pGnqn are measurable sets such that Gn Ó G and there exists k such that µpGkq ă 8, then µpGnq Ó µpGq.

Proof. For 1., de�ne G1 “ F1 and Gn :“ Fn`1zFn and remark that these are disjoints sets. As the measure of a countable
union of disjoints sets equals the sum of the measures of the sets, we get

µpFnq “ µp
n
ď

i“1

Giq “
n
ÿ

i“1

µpGiq “
8
ÿ

i“1

µpGiq Ò µpF q.

For 2., use 1. with Fn “ GkzGk`n, F “ GkzG and decompose µpGkq “ µpGq ` µpGkzGq.
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15.6.2 Technical lemmas

Doubly monotone convergence

Lemma 39 (Doubly monotone sequences). Let pan,kqnPN,kPN be a double sequence of non-negative numbers. Assume that
a is doubly monotone, which means

1. @k P N, pan,kqn is non-decreasing and Da8,k P r0,`8s, an,k ÝÑ
nÑ8

a8,k.

2. @n P N, pan,kqk is non-decreasing and Dan,8 P r0,`8s, an,k ÝÑ
kÑ8

an,8.

Then,

lim
k
a8,k “ lim

n
an,8.

Proof. By a one-to-one transformation (by Arctan for example) of the sequence, we can assume it uniformly bounded.
Let

a
p1q
8 “ lim

k
a8,k and a

p2q
8 “ lim

n
an,8.

Now let ε ą 0. Let k large enough, thus n “ npkq large enough to get

an,k ą a8,k ´ ε ą a
p1q
8 ´ 2ε.

But a
p2q
8 ě an,8 ě an,k which �nally gives a

p2q
8 ě a

p1q
8 . Repeating the argument symmetrically, we �nally get the equality

of the two limits.

Staircase approximation

In the following result, we expose a way to de�ne a sequence of simple functions increasingly converging to a given function.

De�nition 22. Let αp : r0,`8s Ñ r0,`8s given by

αppxq “

$

&

%

0 if x “ 0
pi´ 1q2´p if pi´ 1q2´p ă x ď i2´p ď p p@i P Nq
p if x ą p

This function is left-continuous (i.e., if xÑ x0 with x ď x0, then αppxq Ñ αppx0q).

Figure 15.2: An example of the staircase transformation

Proposition 35. The sequence pαp ˝ fqp is a sequence of simple functions such that αp ˝ f Ò f .

A simpler case: Simple functions

Lemma 40. Let pfnqn be a sequence of non-negative simple functions and f a non-negative measurable function such that
fn Ò f , then

µpfnq Ò µpfq.
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Proof. Step 1 : (f “ 1A) Assume that fn Ò 1A, for A measurable. We obviously have that µpfnq ď µp1Aq. Moreover, the
sequence of real numbers µpfnq is non-decreasing. Let ε ą 0 and An “ tx P A : fnpxq ą 1´ εu. We have that An Ò A and
then, by Lemma 38, µpAnq Ò µpAq. But, by de�nition,

p1´ εq1An ď fn

so that p1´ εqµpAnq ď µpfnq. Since we took an arbitrary ε, it holds that

µp1Aq “ µpAq ď lim inf µpfnq ď lim supµpfnq ď µp1Aq

Step 2 : (f a simple functions) Let f be of the form f “
ř

αk1Ak , for a �nite number of Ak. We apply the previous case
to the convergence of

α´1
k 1Akfn Ò 1Ak

Step 3 : (Approximating f) We show that there exists a sequence fk of simple functions satisfying both µpfkq Ò µpfq and
fk Ò f . By de�nition of the Lebesgue integral,

µpfq “ suptµphq : h is simple and 0 ď h ď fu.

Hence, there exists a sequence phkq such that µphkq Ò µpfq. But using the staircase function αp, we can construct a
sequence gp :“ αp ˝ f such that gp Ò f . Now de�ne

fk “ maxtgk, h1, . . . , hku.

Since pgkqk is non-decreasing, fk is also non-decreasing and µphkq ď µpfkq ď µpfq and so holds the convergence µpfkq Ñ
µpfq.
Step 4 : (Uniqueness of the limit) Let fn Ò f and gk Ò f two non-decreasing sequences of simple functions. We show that
limµpfnq “ limµpgkq. De�ne hn,k “ mintfn, gku and note that it is a doubly increasing sequence. Moreover,

hn,k ÝÑ
nÑ8

gk and hn,k ÝÑ
kÑ8

fn.

Since the limits gk, fn and hn,k are simples functions, we can apply Step 2 and get

µphn,kq ÝÑ
nÑ8

µpgkq and µphn,kq ÝÑ
kÑ8

µpfnq

which allows us to apply Lemma 39 to the sequence µphn,kqn,k and we get the uniqueness of the limit.
Step 5 : (Putting all together) Take fk de�ned in step 3, then µpfkq Ò µpfq. But, by hypothesis, we have that fn Ò f ,

then by the uniqueness of the limit µpfnq Ò µpfq “ limµpfkq.

Monotone convergence theorem

Theorem 33 ((MON)). Let pfnqn and f non-negative measurable functions such that fn Ò f . Then

µpfnq Ò µpfq.

Proof. By the staircase approximation, we construct a double index sequence pαp ˝ fnqn,p of simple functions such that

αp ˝ fn ÝÑ
pÑ8

fn and αp ˝ fn ÝÑ
pÑ8

αp ˝ f

where the �rst fact holds by the de�nition of αp and the second holds by the left-continuous property of αp. Obviously,
the convergences occur in an increasing manner. Then applying Lemma 40, we get

µpαp ˝ fnq ÝÑ
pÑ8

µpfnq and µpαp ˝ fnq ÝÑ
pÑ8

µpαp ˝ fq

which occurs again in an increasing manner. Now applying Lemma 39 for the sequence pµpαp ˝ fnqqn,p, we get

µpfnq Ò lim
pÑ`8

µpαp ˝ fq “ µpfq.
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Chapter 16

Basic probability results

We state here the important Borel-Cantelli lemma.
For a sequence of events pEnqn we denote tEn i.o.u for the event

tEn i.o.u “ tω : @m, Dnpωq ě m such that ω P Enpωqu.

“ tω : ω P En for in�nitely many nu

Lemma 41 (Borel-Cantelli). For a sequence of events pEnqn such that
ř

ně0 P pEnq ă `8. Then

P plim supEnq “ P pEn i.o.q “ 0

Proof. De�ning Gm :“
Ť

němEn and G :“ lim supEn so that we have Gm Ó G. Then for any m P N, we have

P pGq ď
Lemma 38

P pGmq ď
ÿ

něm

P pEnq .

When we let mÑ `8,
ř

něm P pEnq ÝÑ
nÑ8

0 and then P pGq “ 0.

Lemma 42 (Borel-Cantelli-reverse). For a sequence of independent events pEnqn such that
ř

ně0 P pEnq “ `8 one has

P plim supEnq “ P pEn i.o.q “ 1

Proof. We work with the complementary of En and we also note pn “ P pEnq. By independence,

P

˜

č

něm

Ecn

¸

“
ź

něm

p1´ pnq, @m,

where this can be shown for every r ě n ě m to get a �nite intersection �rst and then let r Ñ8. But since 1´ x ď e´x

for x ě 0, one has that
ź

něm

p1´ pnq ď exp

˜

´
ÿ

něm

pn

¸

“ 0.

But since plim supEnq
c “ lim inf Ecn “

Ť

m

Ş

němE
c
n, we get that P pplim supEnq

cq “ 0.

Lemma 43 (Jensen Inequality). Let φ be a convex function on an open interval I of R of the form pa, bq. For a random
variable X such that

E r|X|s ă `8, P pX P Iq “ 1, E r|φpXq|s ă `8.

Then we have that

φpE rXsq ď E rφpXqs .

Proof. Let panqn and pbnqn de�ned in Lemma 31, in order to have φpxq “ supnPNpanx` bnq. Then, for any n,

E rφpXqs ě anE rXs ` bn.

But since the inequality is valid for all n, the supn is also bounded by E rφpXqs which gives the result.
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16.0.1 Convergence in probability

The following results are stated for random variables taking values in R. At the simple cost of replacing |X ´ Y | by the
quantity dpX,Y q de�ned in De�nition 2, we can generalize the following results to random vectors in Rk.

Lemma 44. Let pXnqn be a sequence of random variables such that

@ε ą 0,
`8
ÿ

n“0

P p|Xn ´X| ě εq ă `8

then Xn
a.s.
ÝÑ X.

Proof. Let En,ε :“ tω P Ω : |Xnpωq ´Xpωq| ě εu and let Aε :“ lim supEn,ε. The assumption of Borel-Cantelli lemma is
ful�lled and thus P pAεq “ 0. But

Acε “ tω P Ω : Dn0,@n ě n0, |Xnpωq ´Xpωq| ă εu

is then of probability 1. Let εi “ 2´i and let

Λ :“
8
č

i“0

Acεi .

The set Λ is a countable intersection of events of probability one then is also of probability 1. Now for any ω P Λ, we have
that Xnpωq Ñ Xpωq. This is exactly Xn

a.s.
ÝÑ X.

We see directly that the assumption of Lemma 44 implies the convergence in probability of the sequence Xn towards X.
The convergence of probability does not implies convergence almost sure as seen by Example 2.

Lemma 45. Let pXnqn be a sequence of random variables such that Xn
P
ÝÑ X. Then there exists a sub-sequence pXnkqk

such that Xnk
a.s.
ÝÑ X.

Proof. We will extract a sub-sequence of the sequence pXnqn which veri�es the assumption of Lemma 44. Let εk “ 2´k.
The convergence in probability implies that P p|Xn ´X| ą εkq ÝÑ

nÑ8
0 then Dnk P N such that

P p|Xnk ´X| ą εkq ď
1

k2
.

Let ε ą 0. There exists k0 P N such that @k ě k0, εk ă ε, then

t|Xnk ´X| ą εu Ă t|Xnk ´X| ą εku.

We verify the assumption of Lemma 44,

`8
ÿ

k“0

P p|Xnk ´X| ą εq ď
k0´1
ÿ

k“0

P p|Xnk ´X| ą εq

looooooooooooomooooooooooooon

ă`8

`

`8
ÿ

k“k0

P p|Xnk ´X| ą εkq
looooooooooomooooooooooon

summable

ă `8

and then Xnk ´X
a.s.
ÝÑ 0.

16.0.2 From convergence in P to a.s.

In this section, we give a simple argument that permits to bridge the gap between convergence in probability and conver-
gence a.s. This is doable when the random variables are upper bounded by a common variable.

Lemma 46 (Kolmogorov Truncation). Let X1, . . . , Xn, . . . be random vectors such that there exists X a positive random
variable with E rXs ă 8 and @n P N˚, }Xn} ď X. For all n P N˚, de�ne

Yn :“

"

Xn if }Xn} ď n
0 if }Xn} ą n

Then,

i) P pXn “ Yn eventuallyq “ 1. [PRECISE THIS]

ii) }
ř

ně1 n
´2Var pYnq } ă 8.
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Proof. For proving iq, we use Borel-Cantelli's lemma (Lemma 41) and the fact that

ÿ

ně1

P pYn ‰ Xnq “
ÿ

ně1

P p}Xn} ą nq ď
ÿ

ně1

P pX ą nq ď E rXs ă 8.

For iiq, we see that

›

›

ÿ

ně1

n´2Var pYnq
›

› ď
ÿ

ně1

n´2E
“

}Yn}
2
‰

ď
ÿ

ně1

E
“

}Xn}
2
1}Xn}ďn

‰

n2
ď

ÿ

ně1

E
“

}Xn}
2
1}Xn}ďn1Xďn

‰

n2
`

ÿ

ně1

E r1Xąns

ď
ÿ

ně1

E
“

X2
1Xďn

‰

n2
` E rXs “ E

»

–X2
ÿ

němaxp1,Xq

1

n2

fi

fl` E rXs

ď 2E

»

–X2
ÿ

němaxp1,Xq

1

n
´

1

n` 1

fi

fl` E rXs “ 2E
„

X2

maxp1, Xq



` E rXs ď 3E rXs ă 8

This later result allows to derive a implication between convergence in probability and convergence a.s. for sums of random
variables.

Lemma 47. Let X1, . . . , Xn, . . . be random vectors such that there exists X a positive random variable with E rXs ă 8
and @n P N˚, }Xn} ď X. We assume that

Sn “
1

n

n
ÿ

i“1

Xn
P
ÝÑ µ.

Then,
Sn

a.s.
ÝÑ µ.

Proof. Since the sequence pXiqi is uniformly bounded by X which is integrable, we have that it is U.I. (see Proposition
1) and so is pSnqn. Hence, one has that

1

n

n
ÿ

i“1

E rXns ÝÑ
nÑ`8

µ.

Now, using the Yi of Lemma 46, we get that

1

n

n
ÿ

i“1

Yi ´
1

n

n
ÿ

i“1

Xi
a.s.
ÝÑ 0 and also

1

n

n
ÿ

i“1

E rYns ÝÑ
nÑ`8

µ (by DOM).

Then, it only remains to show that n´1
ř

Yi ´ E rYis
a.s.
ÝÑ 0. The second point of Lemma 46 allows us to use Lemma 44

together with Bienaymé-Chebyshev inequality to get the conclusion.

Remark 4. Notice that the same trick can be used to show that

sup
tPT

1

n

n
ÿ

i“1

Xi,t
P
ÝÑ 0 ô sup

tPT

1

n

n
ÿ

i“1

Xi,t
a.s.
ÝÑ 0

under the uniform assumption @i, }Xi,t} ď Xt such that E rsupXts ă 8. In this case, point iq of Lemma 46 will be
replaced by P p@t P T , Xi,t “ Yi,t eventuallyq “ 1.

Exercice 29. Show the equivalence of Remark 4.

16.1 Stein equation for Gaussian vectors

Stein equation is one of the numerous characterization of the Gaussian law. We �rst derive the 1 dimensional case and
extend the su�cient condition in the case of Gaussian vectors. We recall that the notation C1

b holds for the set of functions
that are piecewise di�erentiable and of bounded derivative.

Proposition 36. Let X be a real random variable such that E rXs “ 0 and Var pXq “ σ2. Then it holds that

E rXF pXqs “ σE
“

F 1pXq
‰

, @F P C1
b pRq ô X is Gaussian (16.1)
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Proof. Without loss of generality, we only prove the Proposition for standard Gaussian variables as it is always possible to
renormalize a centered Gaussian variable to a standard one. Let Z be a standard Gaussian variable, then for any function
F in C1

b pRq,

E
“

F 1pZq
‰

“
1
?

2π

ż

R
F 1pzqe´z

2
{2dz

“
1
?

2π

ż 0

´8

F 1pzq

ż z

´8

´xe´x
2
{2dxdz `

1
?

2π

ż `8

0

F 1pzq

ż `8

z

xe´x
2
{2dxdz

“
1
?

2π

ż 0

´8

ˆ
ż 0

x

F 1pzqdz

˙

p´xqe´x
2
{2dx`

1
?

2π

ż `8

0

ˆ
ż x

0

F 1pzqdz

˙

xe´x
2
{2dx

“
1
?

2π

ż `8

´8

pF pxq ´ F p0qqxe´x
2
{2dx “ E rZF pZqs .

and this shows the necessary condition. For the su�cient condition, let Fz be a solution of the di�erential equation

y1 ´ xy “ 1p´8,zspxq ´ Φpzq

where Φ is the cumulative distribution function for the standard Gaussian variable. This simple di�erential equation have
solutions that are in C1

b and can even be expressed explicitly in terms of the function Φ. Since E rXF pXqs “ E rF 1pXqs
for any function in C1

b , one deduces that

0 “ E
“

F 1zpXq ´XFzpXq
‰

“ P pX ď zq ´ Φpzq

which concludes the proof.

It is possible to generalize the su�cient condition of Proposition 36 to a multidimensional context.

Proposition 37. Let F : Rd Ñ R a function in C1
b and let X “ pX1, . . . , Xdq be a centered Gaussian vector. Then, for

any 1 ď i ď d

E rXiF pXqs “
d
ÿ

j“1

E rXiXjsE rBjF pXqs .

Proof. This is easily proved using Proposition 36 and a conditioning on the variables Xk for k ‰ i.



Chapter 17

Carathéodory theorem

17.1 Measure set theory

17.1.1 Special class of sets

Algebras For a set Ω, we de�ne an algebra as a collection Σ0 of subsets of Ω such that

• Ω P Σ0.

• If F P Σ0 then F c P Σ0. (Stable under complementation)

• If F1, F2 P Σ0 then F1 Y F2 P Σ0. (Stable under �nite union).

σ-algebras A collection Σ of subsets of Ω is a σ-algebra if

• Σ is an algebra.

• F1, F2, . . . , Fn, ¨ ¨ ¨ P Σ then
Ť

nPN Fn P Σ. (Stable under countable union)

In the context of σ-algebras, we omit the index 0 in the notation of Σ. This is to strengthen the fact that σ-algebras are
the main purpose of measure theory.

Comments 1. Note that it is always possible to assume that the sequence of elements are disjoints since, one may replace
the sequence by G1 “ F1, G2 “ F2zF1, . . . , Gn “ Fnz

Ťn´1
i“1 Fi, . . . which is such that

ď

nPN
Fn “

ď

nPN
Gn.

π-systems A collection Σ0 of subsets of Ω is a π-system if

• F1, F2 P Σ0 then F1 X F2 P Σ0. (Stable under �nite intersection)

It is direct to see that any σ-algebra is an algebra and any algebra is a π-system.

λ-sets For a function λ : Σ0 Ñ r0,`8s on the algebra Σ0 and such that λpHq “ 0, we say that a element L P Σ0 is a
λ-set if

@K P Σ0, λpLXKq ` λpL
c XKq “ λpKq. (17.1)

σ-algebras generated For a class C of subsets of Ω, we de�ne the σ-algebra generated by C and denoted by σpCq as
the smallest (for the inclusion) σ-algebra that contains C. In more precise words, σpCq is the intersection (show that it is
still a σ-algebra) of all σ-algebras that contain C.

17.1.2 De�nition of measures

As in the previous section, we de�ne special classes of functions Σ0 Ñ r0,`8s adapted to each context of subsets de�ned
above.
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Additivity Let Σ0 be an algebra. A function µ0 : Σ0 Ñ r0,`8s is said to be �nitely additive (or additive) if

• µ0pHq=0.

• For any pair of disjoints sets F1, F2 P Σ0, we have

µ0pF1 Y F2q “ µ0pF1q ` µ0pF2q.

Measure Let Σ be an σ-algebra. A function µ : Σ Ñ r0,`8s is said to be a measure (or countably additive) if

• µpHq=0.

• For any sequence of disjoints sets F1, F2, . . . , Fn, ¨ ¨ ¨ P Σ, we have

µp
ď

nPN
Fnq “

ÿ

nPN
µpFnq.

All together the triple Ω,Σ, µ is called a measure space. The measure µ is said to be �nite if µpΩq ă `8. mu is said to
be σ-�nite if there exists a sequence Ω1, . . . ,Ωn, . . . of elements of Σ such that

ď

nPN
Ωn “ Ω and µpΩnq ă `8,@n P N.

A probability space is a measure space Ω,Σ, µ where µpΩq “ 1 and the measure µ is called a probability measure.
We usually adopt the notation P instead of µ for a probability measure.
A more general notion of measure is the so-called outer measures that are a building step to construct important examples
of measures such that Lebesgue measure.

Outer measures Let Σ be a σ-algebra. A function µ0 : Σ Ñ r0,`8s is called a outer measure if it satis�es

• µ0pHq “ 0.

• (increasing) For any two sets F1, F2 P Σ such that F1 Ď F2,

µ0pF1q ď µ0pF2q.

• (countable sub-additivity) For any sequence F1, . . . , Fn, . . . of elements of Σ,

µ0p
ď

nPN
Fnq ď

ÿ

nPN
µ0pFnq.

17.1.3 Extension theorems

Proposition 38 (λ-sets form an algebra). Let L0 be the set of all λ-sets of an algebra Σ0. Then the set L0 is an algebra
and the restriction λL0

: L0 Ñ r0,`8s is additive.

Proof. We verify the three axioms of an algebra.
Full set Ω is obviously a λ-set.
Complementary By the symmetry of the de�nition of a λ-set, its complementary is trivially a λ-set.
Stability by �nite intersection Let L1 and L2 two elements of L0, let L “ L1XL2 and let K P Σ0. Since L1, L2 are λ-sets,
we get that

λpLXKq ` λpLc1 X L2 XKq “ λpL2 XKq (with L1 and L2 XKq

λpL2 XKq ` λpL
c
2 XKq “ λpKq (with L2 and Kq

λpLc XKq “ λpL2 X L
c
1 XKq ` λpL

c
2 XKq (with L2 and Lc XKq

where we remark that Lc X L2 “ L2 X Lc1 and Lc X Lc2 “ Lc2. Now summing up the three equalities leads to the desired
equation for L.
λ is �nitely additive Let L1 and L2 two disjoints λ-sets. Using Equation (17.1) for L1 and K “ L1 Y L2, we get

λpL1 Y L2q “ λppL1 Y L2q X L1q ` λppL1 Y L2q X L
c
1q “ λpL1q ` λpL2q

which �nishes the proof.
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The following lemma explores the case of σ-algebras instead of simple algebras. Its stronger structure permits to deduce
that µ0 is a measure at the cost of assuming that it is already a outer measure.

Lemma 48 (Carathéodory Lemma). Let λ be a outer measure on pΩ,Σq. The class L of all the λ-sets in Σ is a σ-algebra
on which the outer measure λ is a measure.

Proof. Thanks to the result of Proposition 38, we already know that λ is additive. Hence, the only two things that remains
to show is the countable additivity for µ0 and the stability under countable union for L. Let L1, . . . , Ln, . . . be a sequence
of disjoints elements in L. Let L “

Ť

ně1 Ln. By the fact that any �nite union of elements in L is again in L, we get that
for Mn “

Ťn
k“1 Lk and any K P Σ,

λpKq “ λpMn XKq ` λpM
c
n XKq ě λpMn XKq ` λpL

c XKq

since Lc ĎM c
n. But then, using Proposition 38 again leads to the following inequality

λpKq ě
n
ÿ

k“1

λpLk XKq ` λpL
c XKq p@n ě 1q,

and taking the limit and the countable sub-additivity we �nally get

λpKq ě
ÿ

kě1

λpLk XKq ` λpL
c XKq ě λpLXKq ` λpLc XKq.

On the other side, the sub-additivity of λ implies,

λpKq ď λpLXKq ` λpLc XKq

and then the two previous inequalities imply that all the inequalities written above are actual equalities. In particular,
this shows that L belongs to L (and then L is a σ-algebra) and taking K “ L we see that

λpLq “
ÿ

kě1

λpLkq.

17.1.4 Carathéodory theorem

The following theorem is an angular stone to construct all the measures that are commonly used in probabilistic theory.

Theorem 34. Let Ω be a set, and let Σ0 be an algebra on Ω. We associate to Σ0 its generated σ-algebra Σ “ σpΣ0q. Let
µ0 be a countably sub-additive map µ0 : Σ0 Ñ r0,`8s. Then, there exists a measure µ : Σ Ñ r0,`8s such that

µ|Σ0
“ µ0.

Moreover, if µ0pΩq ă `8, then the extension µ is unique.

Remark Many authors do assume that the map µ0 is countably additive in Theorem 34. It is actually not needed
as seen in the proof below. Besides, it is usually of similar complexity to show countable sub-additivity or countable
additivity. As a corollary result, we get that µ0 is in fact countable additive as a restriction of µ.

Proof. We consider the largest σ-algebra possible G that contain all the subsets of Ω. We de�ne a function λ : G Ñ r0,`8s
by

λpGq “ inf
ÿ

ně1

µ0pFnq p@G P Gq

where the in�mum is taken over all the sequences pFnqn of elements of Σ0 such that G Ď
Ť

ně1 Fn.

Fact 1 : λ is an outer measure on pΩ,Gq
It is direct to see that λpHq “ 0. It is also direct to get the increasing property since the de�nition of λ involves an inf.
For the sub-additivity, let pGnqn be a sequence of elements of G such that λpGnq ă `8 (otherwise there is nothing to
prove). Then, for any n ě 1 and ε ą 0, it is possible to �nd a sequence pFn,kq of elements of Σ0 such that

Gn Ď
ď

kě1

Fn,k and
ÿ

kě1

µ0pFn,kq ă λpGnq ` ε2
´n.
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Figure 17.1: A sum up of the classes of importance in measure theory represented as inclusion of sets for sub-classes. On
the bottom side, the de�nitions of di�erent types of classes correspond to de�nitions for non-negative valued function on
the top. The inclusions represents sub-classes and bold notions are enlightened to show their major importance. Finally,
dashed lines are reserved for minor notions.

Let G “
Ť

ně1Gn Ď
Ť

n,kě1 Fn,k so that pFn,kqn,k is a sequence of elements of Σ0 containing G. Then,

λpGq ď
ÿ

n,kě1

µ0pFn,kq ă
ÿ

ně1

λpGnq ` ε

and since, ε is arbitrary, we get the sub-additivity.

Fact 2 : λ is a measure on pΩ,Lq
We de�ne L the class of λ-sets on the class G. By Carathéodory Lemma 48, we get that L is a σ-algebra and λ is indeed
a measure on L.

Fact 3 : λ “ µ0 on pΩ,Σ0q

Let F P Σ0. We have directly that λpF q ď µ0pF q (pick a silly sequence). For the λpF q ě µ0pF q part, pick any sequence
pFnqn of elements of Σ0 with an union containing F and de�ne the sequence of disjoints sets pEnqn, by

E1 :“ F1, En “ Fnzp
n´1
ď

k“1

Fkq.

Then, by the countable sub-additivity of µ0, we get

µ0pF q “ µ0p
ď

ně1

pF X Enqq ď
ÿ

ně1

µ0pF X Enq ď
ÿ

ně1

µ0pEnq ď
ÿ

ně1

µ0pFnq.

Now, taking the in�mum on both sides gives µ0pF q ď λpF q hence the equality.

Fact 4 : Σ0 Ď L
Let F P Σ0 and K P G. We will show that F is a λ-set. By the sub-additivity of λ, we already have that

λpKq ď λpF XKq ` λpF c XKq.
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For any ε ą 0, there exists a sequence pFnqn of elements of Σ0 such that K Ď
Ť

ně1 Fn and

ÿ

ně1

µ0pFnq ă λpKq ` ε.

But, we also have
ÿ

ně1

µ0pFnq “
ÿ

ně1

µ0pF X Fnq `
ÿ

ně1

µ0pF
c X Fnq ě λpF XKq ` λpF c XKq.

Since, ε is arbitrary, we get that λpKq ě λpF XKq ` λpF c XKq which concludes the fact.

Fact 5 : De�nition of µ
By the fact 2,3 and 4, we get that Σ0 Ď Σ :“ σpΣ0q Ď L. But since we already de�ned λ, a measure extending µ0 on L,
it su�ces to de�ne µ as the restriction of λ on Σ.
Fact 6 : Uniqueness of µ
In the case of µpΩq ă 8, we use Theorem 35 to conclude.

A important side result of the proof that we gave here is a general construction of an outer measure on any algebra.

Canonical outer measure To any algebra Σ0 de�ned on Ω, one can construct an outer measure by the formula

λpGq “ inf
ÿ

ně1

µ0pFnq p@G P PpΩqq (17.2)

where the in�mum is taken over all the sequences pFnqn of elements of Σ0 such that G Ď
Ť

ně1 Fn. Such an outer measure
is named the canonical outer measure associated to Σ0. But one has to be careful since a little structure (namely the
sub-additivity) on µ0 is needed to have that λ and µ0 coincide on Σ0.

17.1.5 Uniqueness of extension

In this section, we treat the case of the uniqueness of the extension of measures. In fact, it is su�cient to de�ne the
values of the measure on a smaller set than the σ-algebra Σ. The adapted notion is the π-systems. From the de�nitions,
it is clear that σ-algebras are a stronger structure than π-systems. What is lacking from a π-system to be a σ-algebra is
precisely the topic of d-systems (for Dynkin) de�ned in the following.

d-systems Let Ω be a set and D be a collection of subsets of Ω having the three following properties:

• Ω P D.

• For any two elements A,B P D with A Ď B, we have BzA P D.

• For any sequence pAnqn of elements of D such that An Ò A, then A P D.

Such a set D is called a d-system. For a class of subsets Σ0, we denote by dpΣ0q the generated d-system as the set
given by the intersection of all d-systems containing Σ0.

Proposition 39. Let Σ be a class of subsets of Ω. Then Σ is a σ-algebra if and only if it is a π-system and a d-system.

Proof. We only need to prove the if part since, obviously, a σ-algebra is a π-system and a d-system. Assume that Σ is
a π-system and d-system. If F P Σ, then F c “ ΩzF P Σ. Also for F1, F2 P Σ, we have F c1 X F c2 P Σ (π-system) and
F1YF2 “ ΩzpF c1 XF

c
2 q P Σ, so that Σ is an algebra. Now let pFnqn be a sequence in Σ and Gn “ F1Y¨ ¨ ¨YFn. Obviously,

Gn Ò
Ť

Fk and then
Ť

Fk P Σ.

It is now the time to give the important result of the section.

Lemma 49 (Dynkin). Let Σ0 be a π-system. Then

dpΣ0q “ σpΣ0q.

Proof. It is obvious that we have dpΣ0q Ď σpΣ0q so it is enough to show that dpΣ0q is a π-system. For that purpose, de�ne

D1 :“ tA P dpΣ0q : @B P Σ0, AXB P dpΣ0qu

and
D2 :“ tA P dpΣ0q : @B P dpΣ0q, AXB P dpΣ0qu.
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We have D2 Ď D1 Ď dpΣ0q and we will show equality of these sets. First, we see that Σ0 Ď D1 (since Σ0 is a π-system).
Thus, it is enough to show that D1 is a d-system. To see that, write for A1 Ď A2 two elements of dpΣ0q and B P Σ0,

pA2zA1q XB “ pA2 XBqzpA1 XBq

and for a sequence An Ò A in dpΣ0q,
pAn XBq Ò pAXBq.

The set D1 being a d-system, we have that D1 “ dpΣ0q. By de�nition of D1, this last fact insures that Σ0 Ď D2. But
as before, D2 is actually a d-system then D2 “ Σ0 and this shows that dpΣ0q is a π-system then a σ-algebra. Finally,
dpΣ0q “ σpΣ0q.

We are now ready to prove the following uniqueness result.

Theorem 35 (Uniqueness of extension). Let Ω be a set such that Σ0 is a π-system on Ω. We de�ne Σ “ σpΣ0q. Let µ1

and µ2 be two measures on pΩ,Σq such that

• µ1pΩq “ µ2pΩq ă 8.

• @A P Σ0, µ1pAq “ µ2pAq.

Then,
µ1 “ µ2 as measures on pΩ,Σq.

Proof. Let D :“ tA P Σ : µ1pAq “ µ2pAqu. The goal is to show that D is a d-system. For any A,B P D with A Ď B, we
have that

µ1pBzAq “ µ1pBq ´ µ1pAq “ µ2pBq ´ µ2pAq “ µ2pBzAq

where the equality holds since we are only dealing with �nite values. Then BzA P D. Let An Ò A where An P D, then

µ1pAq “Ò limµ1pAnq “Ò limµ2pAnq “ µ2pAq

where we used Lemma 38. Thus A P D and D is a d-system. We have Σ0 Ď D then, using Dynkin's Lemma, we get that
D “ Σ.

Remarks The assumption on the �niteness of µpΩq is important and cannot be avoided. The assumption that µ1 and
µ2 are two measures is also important to use Lemma 38. The conclusion also fails to hold if µ1 and µ2 are only assumed
to be �nitely additive.

17.1.6 De�niton of the Lebesgue measure

The construction of Lebesgue measure is an important step to understand the classical construction of Skorokod for the
existence of random variables of given distribution function. There is actually two options to de�ne a measure based on a
restriction of outer measures. The �rst one is to use Carathéodory extension theorem directly and then the only thing to
check is the sub-additivity of µ0. The second is to de�ne the outer measure directly and to show that the outer measure
de�ned in Equation (17.2) equals µ0 on the algebra. We follow the second option here. The interested reader may �nd
the other option in [19, A.1.9].

De�nition of Leb on pp0, 1s,Bpp0, 1sqq

We de�ne an algebra,

Σ0 :“ tA “ pa1, b1s Y ¨ ¨ ¨ Y par, brs : r ě 1, ai ď bi ď ai`1 ď bi`1,@iu.

as the set of all �nite disjoint unions of semi-open intervals. It is easy to see that σpΣ0q “ Bpp0, 1sq. We can easily de�ne
a countably additive map µ0 on Σ0 by

µ0pAq :“
r
ÿ

i“1

pbi ´ aiq

that we will extend into Leb. It is easy to see that µ0 is well de�ned and �nitely additive. Let λ be the canonical outer
measure de�ned on Σ0. In our context,

λpAq “ inf

#

r
ÿ

i“1

pbi ´ aiq : A Ď
r
ď

i“1

pai, bis, r ě 1

+
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where the in�mum is on the sets of the form of a disjoint union
Ťr
i“1pai, bis that contain A. By Theorem 34, the outer

measure λ is in fact a measure on σpΣ0q. At this point, we could consider that the work is done since a measure has
been constructed but it is still not obvious that for A P Σ0, µ0pAq “ λpAq. By �nite additivity it is enough to show that
λppa, bsq “ b´ a. By construction, we already have that

λppa, bsq ď b´ a

but for any �nite disjoint union of sets
Ťr
i“1pai, bis such that

pa, bs Ď
r
ď

i“1

pai, bis,

we have by simple calculation that

b´ a ď
r
ÿ

i“1

pbi ´ aiq

which implies that b´ a ď λppa, bsq. This reasoning is also applicable to show that λptauq “ 0.

17.2 A random variable of given law

The law (or the probability distribution) of a random variable X on the probability triple pΩ,Σ, P q is the image measure
LX “ P ˝X´1. For a given LpXq it is always possible to de�ne a probability triple and a random variable that correspond
by taking X “ id and P “ LX . This purely theoretical de�nition is not that interesting since it does not give any extra
information. A more interesting question arises when one imposes a probability triple at the origin (usually pR,BpRq,Lebq).
This new question is tackled by Skorohod construction.

17.2.1 Real valued random variables
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Chapter 18

Szemeredi Regularity Lemma

18.1 A basic lemma

A re�ned version of Cauchy-Schwarz inequality One can use regular Cauchy-Schwarz inequality to obtain the
following re�ned result.

Lemma 50. Let paiq1ďiďn be non-negative, pbiq1ďiďn P Rn and let b P R such that

n
ÿ

i“1

ai “ 1
n
ÿ

i“1

aibi “ b.

Let µ ą 0 and assume that Dj ă n such that
j
ÿ

i“1

aibi ě ab` µ

where a “
řj
i“1 ai. Then

n
ÿ

i“1

aib
2
i ě b2 `

µ2

ap1´ aq
.

Proof. We have that

n
ÿ

i“1

aib
2
i ´ b

2 “

n
ÿ

i“1

aib
2
i ´ 2b2 ` b2

“

n
ÿ

i“1

aib
2
i ´ 2p

n
ÿ

i“1

aibibq `
n
ÿ

i“1

aib
2

“

j
ÿ

i“1

aipbi ´ bq
2 `

n
ÿ

i“j`1

aipbi ´ bq
2

ě
1

a

˜

j
ÿ

i“1

aipbi ´ bq

¸2

`
1

1´ a

˜

n
ÿ

i“j`1

aipbi ´ bq

¸2

ě
µ2

a
`

µ2

1´ a
“

µ2

ap1´ aq

where we used that
řj
i“1 aipbi ´ bq “ ´

řn
i“j`1 aipbi ´ bq.

We can derive a useful corollary:

Corollary 13. For any sequence pxkqk such that

m
ÿ

k“1

xk “
m

n

n
ÿ

k“1

xk ` δ

we have, for m ď n,
n
ÿ

k“1

x2
k ě

1

n

˜

n
ÿ

k“1

xk

¸2

`
δ2n

mpn´mq
.

Proof. Use Lemma 50 with ai “ 1{n, µ “ δ{m and bi “ xi.
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18.2 Regular graphs and partitions

In this section, we de�ne the notion of regular graphs that is a graph that has a lot of characteristics in common with a
random graph. For a graph G “ pV,Eq and X,Y Ă V , we call density between X and Y the quantity

dpX,Y q “
epX,Y q

|X||Y |

where epX,Y q is the number of edges between an element of X and an element of Y and |X|, |Y | hold for the cardinals of
X and Y . Of course, dpX,Y q ď 1 and the equality is obtained if the edges between X and Y correspond to the complete
bipartite graph.

De�nition 23. Let G “ pV,Eq be a graph and let X,Y Ă V be disjoints and non-empty. We say that the pair X,Y is
ε-regular if for any A Ď X, B Ď Y , such that |A| ě ε|X| and |B| ě ε|Y |, it holds that

|dpA,Bq ´ dpX,Y q| ď ε.

The pair X,Y is called ε-irregular otherwise.

A equitable partition of a graph is de�ned as P “ pC0, . . . , Ckq where the number of vertices in C1, . . . , Ck are the
same. The class C0 is called the exceptional class. The index of an equitable partition P is given by

Ind P “
1

k2

ÿ

1ďiăjďk

dpCi, Cjq
2

The index is a suitable notion of the re�nement of a partition since we have that 0 ď Ind P ď 1{2 and Ind P ď Ind Q, if
Q is a re�nement of P .

De�nition 24. Let G “ pV,Eq be a graph and let P be an equitable partition of V into C0, . . . , Ck. The partition P is
called ε-regular if |C0| ď εn and if at most εk2 pairs pCi, Cjqi,j are ε-irregular.

The important remark in the paper of [14] is that a particular manner to re�ne irregular partitions ensures that the index
increases by a lower bounded quantity and is, then, possible only a �nite number of times.

Lemma 51. Let G “ pV,Eq be a graph on n vertices and let P be a equitable partition of V into C0, . . . , Ck. Let ε be
such that 4k ą 600ε´5. Then, if there is more than εk2 irregular pairs, there exists a equitable partition Q of size at most
1` k4k such that the cardinality of the exceptional class does not exceed |C0| `

n
4k

and such that

Ind Q ě Ind P `
ε5

20
.

We are now able to state the main theorem.

Theorem 36 (Szemeredi Regularity Theorem). Let ε ą 0 and t P N˚, then there exists integers Npε, tq and Mpε, tq
such that every graph G “ pV,Eq with |V | ě Npε, tq, there exists a ε-regular partition of G into k ` 1 classes such that
t ď k ďMpε, tq.

Proof of Theorem 36. We begin with a trivial partition that have enough elements. Let s be an integer such that 4s ě
600ε´5, s ě t and s ě 2{ε. De�ne the function f by fp0q “ s and for any integer k,

fpk ` 1q “ fpkq4fpkq.

Let G be a graph (whose number of vertices n is greater than Npε, tq) and let

T “ tk P N : D a partition P into 1` fpkq classes s.t. Ind P ě
kε5

20
and |C0| ď εnp1´ 2´pk`1qqu.

Of course any such partition verify |C0| ď εn and 0 P T since any partition with |C0| ď εn{2 and letting the rest of Ci being
completely free ful�lls the assumptions of T . On the other hand, T has a maximum since Ind P ď 1{2 adn denote k0 this
maximum. Then there exists P a partition into 1` fpk0q classes such that Ind P ě k0ε

5{20 and |C0| ď εnp1´ 2´pk0`1qq.
Assume that P is not a ε-regular partition. Then, by Lemma 51, one can construct another partition P˚ into 1 ` fpk0q

classes such that Ind P˚ ě pk0` 1qε5{20. Obvious calculation also show that the exceptional class ful�lls the condition of
T if

ε´1

4fpk0q
ď 2´pk0`2q ð 4s ě 4ε´1

which is obviously satis�ed by the choice of s. This contradict the maximality of k0 then P is ε-regular. In this construction
Mpε, tq can be taken equal to fpt10ε´5uq and Npε, tq be such that the graph could be cut into fpMpε, tqq ` 1 if needed so
Npε, tq “ fpMpε, tqq ` 1.



Chapter 19

Sobolev spaces Wα
p

In this chapter we gather the important features of Sobolev spaces that are needed for the approximation of the functions
inside these spaces by polynomial functions.

19.1 Notations and de�nitions

19.1.1 Functional space Wα
p p∆q and Vβp∆q

Let Qm be the m-dimensional half-open unit cube in Rm (i.e. 0 ď xi ă 1, i “ 1, . . . ,m). We denote by k “ pk1, . . . , kmq
a multi-index (@i, ki is an non-negative integer), xk “

śm
i“1 x

ki
i and |k| “

ř

ki. We denote by Dk the corresponding
diferencial operator given by

Dk “
B|k|

Bxk1
1 . . . Bxkmm

.

For a cube ∆ with edges parallel to the coordinate axes, p ě 1, α ą 0 we denote by Wα
p p∆q the Sobolev space endowed

with its natural norm } ¨ }Wα
p p∆q

. We recall that for θ “ α´ tαu and u PWα
p p∆q,

}u}Wα
p p∆q

“ }u}Lpp∆q ` }u}Lαp p∆q

where

}u}Lαp p∆q “
ÿ

|k|“α

ż

∆

|Dku|pdx.

The semi-norm } ¨ }Lαp p∆q, has a homogeneity property with respect to linear transformation of the cube.

19.1.2 Density of C8
c

19.1.3 Alternative norm for a bounded Ω

It is known since the work of Sobolev [13] that it is possible to de�ne a family of di�erent norms on the spaceWα
p that turn

to be equivalent to the canonical de�nition introduced in the previous section. For ` P N˚, we de�ne by P` the projector
onto the set S` de�ned as the set of polynomials of degree less of equal to `´ 1. The projector P` is uniquely de�ned as
the linear operator P` : Wα

p pΩq Ñ S` such that

ż

Ω

xiP`upxqdx “

ż

Ω

xiupxqdx, @|i| ď k.

Along with the operator P`, we de�ne the operator that projects on the supplementary of S` as P
˚
` “ id´P`. It is possible

to de�ne a norm on the set of polynomials S`. If a polynomial P P S` is of the form

P “
`´1
ÿ

k“0

ÿ

α:|α|“k

aαX
α “

`´1
ÿ

k“0

ÿ

α1,...,αm
ř

αi“k

aα1,...,αmX
α1
1 . . . Xαm

m ,
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we can de�ne the norm }P }S` by the formula

}P }pS` “
`´1
ÿ

k“0

¨

˚

˚

˝

ÿ

α1,...,αm
ř

αi“k

ˆ

k

α1, . . . , αm

˙

a2
α1,...,αm

˛

‹

‹

‚

p{2

.

The choice of the norm on the polynomials is actually quite arbitrary as we will see in the following. The only hypothesis
that one wants to impose to the norm chosen is that it is dominated by the in�nity norm on the coe�cients of the
polynomial. The reader may adapt the following results for di�erent choices of norms on S` depending on their speci�c
needs.

Proposition 40. Let α ą 0, 1 ď p ă 8 and ` “ tαu. Assume that Ω is star-shaped and bounded. For any u P Wα
p pΩq,

we de�ne the norm
~u~Wα

p pΩq
“ }P`u}S` ` }P

˚
` u}Lαp pΩq “ }P`u}S` ` }u}Lαp pΩq.

Then the norms ~ ¨ ~Wα
p pΩq

and } ¨ }Wα
p pΩq

are equivalent.

Proof. First of all we see that the equality inside the de�nition of the norm is justi�ed by the fact that the `-th derivative
of a polynomial of order ď ` ´ 1 is identically null. Then the polynomial part of P˚` u “ u ´ P`u which corresponds to
P`u does not a�ect the norm, which implies }P˚` u}Lαp pΩq “ }u}Lαp pΩq. First, we have that }u}Lαp pΩq ď }u}Wα

p pΩq
. Using the

Gram-Schmidt process, we see that one the coe�cient aα1,...,αm can be expressed as

aα1,...,αm “

ż

Ω

Bα1,...,αmpxqupxqdx

where Bα1,...,αm is the element of the Gram-Schmidt basis resulting of the transformation of the monomial Xα1
1 . . . Xαm

m

in the Gram-Schmidt process. On the bounded set Ω, the polynomial Bα1,...,αm is bounded so that applying Holder's
inequality, we get that for a constant Kα1,...,αm such that

aα1,...,αm ď Kα1,...,αm}u}Lp .

Since the norm } ¨ }
p
S`

is dominated by the norm maxα:|α|ď`´1 |aα1,...,αm | then there exists an absolute constant K such
that

}P`u}S` ď K}u}Lp .

This �nally shows that there exists a constant C such that

~u~Wα
p pΩq

ď C}u}Wα
p pΩq

(19.1)

To prove the converse, we use the density of C8c pΩq inside W
α
p pΩq for the norm } ¨ }Wα

p pΩq
. By (19.1), the density also

holds for the norm ~ ¨ ~Wα
p pΩq

. So it remains to show that for any function f P C8c pΩq, we have that

}f}Wα
p pΩq

ď C~f~Wα
p pΩq

or even that
}f}LppΩq ď C~f~Wα

p pΩq

We denote by Pf the polynomial that corresponds to the development of the function f in its Taylor expansion up to
the degree ` ´ 1 around a point a P Ω. We assume that the chosen point is a point of Ω such that for every x P Ω, the
segment ra, xs is included in Ω. This is possible since Ω is star-shaped. Then, since Pf belongs to S`, P`Pf “ Pf and
~Pf~Wα

p pΩq
“ }Pf }S` . But since the linear space S` is of �nite dimension, the norms } ¨ }S` and } ¨ }LppΩq are equivalent

on S`. Then }Pf }LppΩq ď C~Pf~Wα
p pΩq

. It remains to show that

}f ´ Pf }LppΩq ď C~f~Wα
p pΩq

.

By Taylor's formula for multivariate functions, we have that

f ´ Pf pxq “
ÿ

|β|“`

Rβpxqpx´ aq
β

where

Rβpxq “
`

β!

ż 1

0

p1´ tq`´1Dβfpa` tpx´ aqqdt.

By the fact that Ω is bounded and that polynomials are bounded on bounded sets, we have that there exists a constant
C such that

}f ´ Pf }LppΩq ď C
ÿ

|β|“`

}Rβ}LppΩq ď C}f}Lαp ď C~f~Wα
p pΩq

and that concludes the proof.
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19.2 Embedding theorems

In this section we recall and prove in a special case, the famous embedding theorems of Sobolev spaces into LqpΩq or
CpΩq spaces. We recall that when we say that an injection of a linear space A into another linear space B is continuous,
it means that the identity is continuous in the sense of linear operators. In other words, this means that

@a P A, }a}B ď C}a}A

where C is an absolute constant.

19.2.1 Case of Ω “ RN

Theorem 37 (Embedding theorems). Let m ě 1 be an integer and let 1 ď p ă 8. Then we have the following cases

1. if 1
p ´

m
N ą 0, then Wm

p pRN q Ă LqpRN q for any q P rp, p˚s where 1
p˚ “

1
p ´

m
N ,

2. if 1
p ´

m
N “ 0, then Wm

p pRN q Ă LqpRN q for any q P rp,`8q,

3. if 1
p ´

m
N ă 0, then Wm

p pRN q Ă L8pRN q,

where the injections are continuous. In that third case, for k “ tm ´ N
p u and θ “ m ´ N

p ´ k, we have that for any

u PWm
p pRN q,

}Dαu}L8pRN q ď C}u}Wm
p pRN q @α, |α| ă k (19.2)

|Dαupxq ´Dαpyq| ď C}u}Wm
p pRN q}x´ y}

θ a.e. x, y P RN , @α, |α| “ k (19.3)

where the constants only depend on p,N,m. In particular, this shows that Wm
p pRN q Ă CkpRN q

Proof of Theorem 37. We only prove Theorem 37 for the case m “ 1 to keep the notations and the argument simple. The
general case can be proven in the same way by iterating the arguments below and use higher order Taylor expansions
instead of order 1 Taylor expansions as intensively used in the following. We need to treat three cases p ă N , p “ N and
p ą N .

1. Assume p ă N (Sobolev, Gagliardo, Nirenberg Theorem)

The proof of this fact is based on the following lemma.

Lemma 52. Let N ě 2 and let u1, u2, . . . , uN P LN´1pRN´1q. For any x P RN , we de�ne

upxq “ u1px
p1qqu2px

p2qq . . . uN px
pNqq

where xpiq “ px1, . . . , xi´1, xi`1, . . . , xN q. Then, u P L1pRN q and

}u}L1pRN q ď
N
ź

i“1

}fi}LN´1pRN´1q

Proof of Lemma 52. We prove the result by induction on N . If N “ 2, Fubini's theorem applies immediately to the
product u1px2qu2px1q. For N “ 3, we see that

ż

R
|upxq|dx3 “

ż

R
|u1px2, x3q||u2px1, x3q||u3px1, x2q|dx3

ď |u3px1, x2q|

ˆ
ż

R
|u1px2, x3q|

2dx3

˙1{2 ˆż

R
|u2px1, x3q|

2dx3

˙1{2

Then integrating with respect to x2 and applying again the Cauchy-Schwarz inequality for the two functions u3 and
p
ş

R u
2
1dx3q

1{2, we get

ż

R2

|upxq|dx2dx3 ď }u1}L2R2

ˆ
ż

R
|u2px1, x3q|

2dx3

˙1{2 ˆż

R
|u3px1, x2q|

2dx2

˙1{2

.
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Integrating one last time we get }u}R3 ď }u1}L2pR2q}u2}L2pR2q}u3}L2pR2q. For the general case, we assume the result for N

and we denote by N 1 “ N
N´1 . Then for x “ px1, . . . , xN`1q and using Holder's inequality, we get

ż

RN
|upxq|dx1 . . . , dxN ď }uN`1}LN pRN q

ˆ
ż

RN
|u1|

N 1 . . . |uN |
N 1dx1 . . . dxN

˙
1
N1

.

ď }uN`1}LN pRN q

´

}u1}
N 1

LN pRN´1q . . . }uN }
N 1

LN pRN´1q

¯
1
N1

ď }uN`1}LN pRN q

N
ź

i“1

}ui}LN pRN´1q.

Now we apply again Holder's inequality to the functions xN`1 ÞÑ }ui}LN pRN´1q. Each of these functions are in LN pRq
since

ş

R }ui}
N
LN pRN´1q

dxN`1 “ }ui}
N
LN pRN q ă 8. Then the product of these functions belong to L 1

N`¨¨¨`
1
N
pRq “ L1pRq and

ż

R

N
ź

i“1

}ui}LN pRN´1qdxN`1 ď

N
ź

i“1

}ui}LN pRN q

which �nishes the proof.

We go back to the proof of Theorem 37 for q “ p˚. For a function u P C1
c pRN q, we see that @i,

|upx1, . . . , xN q| “

ˇ

ˇ

ˇ

ˇ

ż xi

´8

Biupx1, . . . , t, . . . , xN qdt

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż `8

´8

Biupx1, . . . , t, . . . , xN qdt

ˇ

ˇ

ˇ

ˇ

“: uipx
piqq.

Then using the previous inequality for all i, we get that

|upxq|N ď
N
ź

i“1

uipx
piqq.

So using Lemma 52 on the function
ś

uipx
piqq1{pN´1q so that

}u
N
N´1 }L1pRN q ď

›

›

›

›

›

N
ź

i“1

uipx
piqq

1
N´1

›

›

›

›

›

L1pRN q

ď

N
ź

i“1

›

›

›
uipx

piqq
1

N´1

›

›

›

LN´1pRN´1q
“

N
ź

i“1

›

›

›
uipx

piqq

›

›

›

1
N´1

L1pRN´1q
ď

N
ź

i“1

}Biupxq}
1

N´1

L1pRN q

Finally, we proved that

}u}LN{pN´1qpRN q ď
N
ź

i“1

}Biu}
1
N

L1pRN q . (19.4)

To get freedom, we use the last inequality for the function |u|t´1u for a t that we chose later. So that the partial derivative
of this function are given by t|u|t´1Biu. Using again Holder's inequality, we get that

}u}tLtN{pN´1qpRN q “ }u
t}LN{pN´1qpRN q ď t

N
ź

i“1

›

›|u|t´1Biu
›

›

1
N

L1pRN q
ď t}u}t´1

Lp1´tqp1 pRN q

N
ź

i“1

}Biu}
1
N

LppRN q (19.5)

where p and p1 are linked by the equation p´1`p1´1 “ 1. Since the choice of t is still open, we can equalize the two norms
over u that appear in the last inequality by taking tN{pN ´ 1q “ p1 ´ tqp1 which gives the value t “ p˚pN ´ 1q{N . So
rewriting the last inequality and simplifying by }u}tLp˚ pRN q

on both sides, we get

}u}Lp˚ pRN q ď
p˚pN ´ 1q

N

N
ź

i“1

}Biu}
1
N

LppRN q ď
p˚pN ´ 1q

N2

N
ÿ

i“1

}Biu}LppRN q

and then
}u}Lp˚ pRN q ď C }∇u}LppRN q ď C }u}W 1

p pRN q
.

We conclude the general case u P W 1
p pRN q by taking a sequence un Ñ u of functions in C1

c pRN q by density. Then
}un}Lp˚ pRN q ď C }un}W 1

p pRN q
and we �nish the proof by using Fatou's lemma. It remains to show that for any q P rp, p˚q,

the same bound holds. For this purpose, since p ď q ď p˚, then one can �nd a 0 ď α ď 1 such that

1

q
“
α

p
`

1´ α

p˚
.

Then, by the interpolation inequality (in Theorem 39), one have that }u}Lq ď }u}αLp}u}
1´α
Lp˚

ď }u}Lp ` }u}Lp˚ ď pC `

1q }u}W 1
p
which �nishes the proof.
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2. Assume p “ N

Moving back to (19.5), we have that, for t ě 1

}u}tLtN{pN´1qpRN q ď t}u}t´1
Lpt´1qN{pN´1qpRN q

}∇u}LN pRN q

then using that pat´1bq1{t ď a` b, we get that

}u}LtN{pN´1qpRN q ď Cp}u}Lpt´1qN{pN´1qpRN q ` }∇u}LN pRN qq.

This last inequality is recursive and we see that a higher Lp norm of u is bounded by a lower Lp norm plus an extra term
that involves ∇u. The initialization t “ N shows that }u}LN2{pN´1qpRN q ď C}u}W 1

p
, then applying the previous inequality

to t “ N ` 1, N ` 2, . . . , N ` k, we end up with }u}LN2{pN´1q`kN{pN´1qpRN q ď Ck`1}u}W 1
p
. For any q ě N , there exists k

such that q ď N2{pN ´ 1q` kN{pN ´ 1q. Since, we obviously have that LN pRN q ĂW 1
N pRN q, the interpolation inequality

of Theorem 39 shows that,

}u}LqpRN q ď C}u}W 1
p pRN q

where the constant C only depends on N and q.

3. Assume p ą N (Morrey's Theorem)

Step 1: We prove that for any u P C1
c pRN q, we have that for any cube Q of side a that contains 0, we have that

|up0q ´ uQ| ď Ca1´Np }∇u}LppQq (19.6)

where uQ holds for the means value over Q. For this purpose we use the fundamental

upxq ´ up0q “

ż 1

0

d

dt
uptxqdt.

But then, for any x P Q,

|upxq ´ up0q| ď

ż 1

0

N
ÿ

i“1

|xi| |Biuptxq| dt ď a
N
ÿ

i“1

ż 1

0

|Biuptxq| dt

So taking the mean, given by the operator u ÞÑ |Q|´1
ş

Q
u, we get that

|up0q ´ uQ| ď a
N
ÿ

i“1

ż 1

0

1

|Q|

ż

Q

|Biuptxq| dx dt “ a
N
ÿ

i“1

ż 1

0

1

tN |Q|

ż

tQ

|Biupxq| dx dt

ď
a

|Q|

N
ÿ

i“1

ż 1

0

ˆ
ż

Q

|Biupxq|
p
dx

˙
1
p |tQ|1´

1
p

tN
dt “

aNp1´
1
p q

aN´1
}∇u}LppRN q

ż 1

0

t´
N
p dt

“
1

1´ N
p

a1´Np }∇u}LppQq

where we used that since 0 is in Q, then for any 0 ă t ă 1, we have the inclusion tQ Ă Q. Hence, (19.6) is proved with
C “ p1´N{pq´1.
Step 2: We can generalize (19.6) and show that for any u P W 1

p pRN q, almost any x P RN and any cube Q of side a that
contains x,

|upxq ´ uQ| ď Ca1´Np }∇u}LppQq (19.7)

by using a translation and the density (that holds both a.e. and for the norm W 1
p pRN q) of the functions C1

c pRN q inside
W 1
p pRN q.

Step 3: We now prove (19.2) and (19.3) by using (19.7). To have (19.3), it enough to see that one can �nd a cube of side
}x ´ y} that both contains x and y. Since we also have that }∇u}LppQq ď }u}W 1

p pQq
ď }u}W 1

p pRN q. To see (19.2), we use

the fact that for almost every x P RN we can de�ne a cube Q of side 1 (and hence of volume 1) that contains x and

|upxq| ď |uQ| ` C}∇u}LppQq ď }u}LppQq ` C}∇u}LppQq ď C}u}W 1
p pQq

ď C}u}W 1
p pRN q.

And so almost u is bounded by C}u}W 1
p pRN q almost everywhere which is exactly (19.2).
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19.2.2 The case Ω bounded and regular

The idea of this section is to state a theorem that is an analog of Theorem 37 for a bounded subset of RN . The fact that
we work with functional sets that involve some regularity on the functions that we consider, imposes to have a certain
kind of regularity on the boundary of Ω. This regularity condition (de�ned in De�nition [XXX]) is a su�cient condition
to create an extension of the function f PWm

p pΩq to the entire set RN so that f PWm
p pRN q.

De�nition 25. Let Ω be an open set of RN . For x P RN , we write x “ px1, xN q where x1 P RN´1 and xN P R. We denote
by | ¨ | the Euclidean norm and

1. RN` “ tx : xN ą 0u,

2. C “ tx : |x1| ă 1 and |xN | ă 1u,

3. C` “ C X RN` ,

4. C0 “ tx : |x1| ă 1 and xN “ 0u.

We say that the open set Ω is of boundary C1 if @x P BΩ, there exists a neighborhood O of x in RN and there exists a
one-to-one mapping S : C Ñ O such that

1. S P C1pCq and S´1 P C1pOq (locally a di�eomorphism),

2. SpC`q “ O X Ω and SpC0q “ O X BΩ.

This de�nition is very natural when one is familiar with the notion of maps in the terminology of C1 manifolds. The
requirements on the local map S are the one that make the frontier BΩ a sub-manifold of RN of class C1. This allows to
work on the neighborhood of the frontier of Ω as if we where looking at a piece of RN´1. This de�nition allows us to use
the following technical result that is a extension theorem.

Theorem 38 (Linear extension operator). Assume that Ω Ă RN is a bounded open set of boundary C1 or that Ω is a cube
of RN . Then there exists a linear operator P : W 1

p pΩq Ñ W 1
p pRN q such that for any u P W 1

p pΩq, Pu|Ω “ u (extension of
u) and

}Pu}W 1
p pRN q ď C}u}W 1

p pΩq

where the constant C only depends on the open set Ω.

Proof. Admitted!

At the possible cost of disappointing the reader, we decided not to prove this technical result in these notes. The proof
is based on a re�ection idea where one can de�ne u outside of Ω by symmetry. The case is simple when the open set in
question is a cylindra C de�ned as in De�nition 25. The general case is handled thanks to the recti�cation given by the
local maps S. Obviously this sounds rapid since there is possibly as many local maps as points x P BΩ but the assumption
that Ω is bounded gives that the boundary is in fact a compact set of RN and so, it is possible to restrict ourselves to
a �nite number of local maps. The �nal step consists in gluing the extensions given by the re�ection extensions given
locally thanks to a unit partitioning scheme. These three ideas are not fundamentally hard but involve enough technical
issues that fall beyond the scope of these notes.

Corollary 14 (Embedding II). Assume that Ω is a bounded open set of boundary of class C1 or that Ω is a cube of RN .
Let 1 ď p ď 8, then

1. if 1
p ´

m
N ą 0, then Wm

p pΩq Ă LqpΩq for any q P rp, p
˚s where 1

p˚ “
1
p ´

m
N ,

2. if 1
p ´

m
N “ 0, then Wm

p pΩq Ă LqpΩq for any q P rp,`8q,

3. if 1
p ´

m
N ă 0, then Wm

p pΩq Ă L8pΩq,

in this last case, the same conclusion holds for the continuous representatives of the functions in Wm
p pΩq as in Theorem

37.

Proof. This is a direct use of Theorem 38.

19.2.3 Basic facts on Lp inequalities and density

Theorem 39 (Interpolation inequality). For a function f P LppΩq X LqpΩq where 1 ď p ď q ď 8, then f P LrpΩq for all
p ď r ď q and we have the interpolation inequality

}f}LrpΩq ď }f}
α
LppΩq

}f}1´αLqpΩq
for

1

r
“
α

p
`

1´ α

q
and 0 ď α ď 1.

Proof. This is a direct consequence of Holder's inequality.



Chapter 20

Tareas

20.1 Tarea 1

Esa tarea está dividida en problemas independientes. Fecha limite de entrega : 09/03/2020

Problema 1 (Alrededor de funciones caracteristicas) Sea Z una variable uniforme sobre r´1, 1s.

1. Calcular la función caracteristica de Z.

2. Mostrar que no se puede encontrar variables i.i.d. X,Y tal que X ´ Y „ Z.

Sea f : t ÞÑ aebp|t|`cq
2

.

3. Mostrar que f es una función caracteristica por ciertas constantes a, b, c. Describir la distribución corespondiente.

4. Mostrar que t ÞÑ e´|t|
α

por α ą 2 no puede ser una función carateristica.

Problema 2 (Condiciones de Lindeberg-Feller) Sean Xi „ U r´ai, ais variables uniformes independientes con
@i, ai ă a ă 8.

1. Mostrar que las condiciones de Lindeberg-Feller se cumplen por la sucesión pXiqi si y solo si
ř

i a
2
i “ 8

Sean Xi „ Exppλiq y supongamos que pmax1ďiďn λ
2
i q{

řn
i“1 λ

2
i Ñ 0.

2. Mostrar que bajo la buena standardización (de media y varianza), la suma
ř

iXi converge a N p0, 1q.

Problema 3 (Aplicación de Slutsky)

1. Sean Xn y Ym variables aleatorias independientes de Poisson de parámetros n y m. Que distribución limite tiene
Xn´Ym´pn´mq?

Xn`Ym
cuando n,mÑ8?

Problema 4 (Uniforme integrabilidad) Supongamos dadas unas variables reales positivas X1, . . . , Xn i.i.d. Deno-
tamos Xp1q, . . . , Xpnq las estadísticas de orden.

1. Mostrar que si E
“

Xk
1

‰

ă 8, se cumple

E
”

Xk
prq

ı

ď
n!

pr ´ 1q!pn´ rq!
E
“

Xk
1

‰

.

2. Mostrar que si E
“

X2
1

‰

ă 8, la sucesión pn´1Xpnqqn es uniformemente integrable.

Sea pXnqn una sucesión de variables reales. Sea f : R` Ñ R` una función no decreciente tal que fpxq
x ÝÑ

nÑ8
`8.

Supongamos que E rsupn fp|Xn|qs ă 8.

3. Mostrar que pXnqn es una sucesión uniformemente integrable.

123
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20.2 Tarea 2

In this tarea se busca comparar la técnica de `regular chaining' con la de `generic chaining'. La fecha de entrega de la
tarea es el 06/04/2020.

En lo que sigue, T es un espacio métrico y llamamos d la distancia asociada. Digamos que una sucesión pAnqn de
particiones crecientes (i.e. An Ă An`1) de T es admisible si |An| ď 22n “: Nn para cada n ě 1 y |A0| “ 1. Por un
elemento t P T , se denota Aptq el único elemento de An que contiene t. Usaremos la notación ∆pAq para designar el
diámetro de A P An.

1. Sea pAnq una sucesión admisible y Bn “ An´1 ˆAn si n ě 1 y B´1 “ B0 “ tT u ˆ tT u. Mostrar que pBn´1qně0 es
admisible por el espacio T ˆ T .

2. Mostrar que si dos sucesiones Bn y Cn son admisibles entonces la sucesión An de las particiones dondes los elementos
son de la forma B X C con B P Bn´1 y C P Cn´1 y tal que A0 “ tT u es admisible.

3. Dado una sucesión admisible pAnqn, decir como construir mapeos Πn : T Ñ An tal que @t P T

dpΠnptq,Πn`1ptqq ď ∆pAnptqq.

4. Sea pXtqtPT un proceso de incrementos sub-Gaussianos y tal que @t P T, E rXts “ 0. Mostrar que @n ě 0 y
@u ą

?
2 log 2,

P
ˆ

sup
tPT

XΠn`1ptq ´XΠnptq

∆pAnptqq
ě u2n{2

˙

ď Nn`2 expp´u22nq ď expp´u22n´1q.

Mostrar que
ř

ně0 expp´u22n´1q ď
ř

ně1 expp´u2

2 nq ď 2 expp´u2

2 q.

5. Usando 4., mostrar que

P

˜

@t P T, Xt ă u
ÿ

ně0

2n{2∆pAnptqq

¸

ě 1´ 2 expp´u2{2q

y deducir que existe una constante L ą 0 universal tal que

E
„

sup
tPT

Xt



ď L inf
An admisible

sup
tPT

ÿ

ně0

2n{2∆pAnptqq.

Esa cota se llama cota de generic chaining.

6. Para cada n, de�nimos en “ infA supt ∆pAnptqq. Mostrar que en “ 2 inftε : N pε, T, dq ď Nnu. Deducir que existe
una constante universal C tal que

inf
An admisible

sup
tPT

ÿ

ně0

2n{2∆pAnptqq ď
ÿ

ně0

2n{2en ď C

ż 8

0

a

logN pε, T, dqdε.

La cota de generic chaining es mejor que la cota de Dudley.

7. Sea paiqiě1 una sucesión t.q. ai ą 0, de�nimos el elipsoide

E “

#

t P `2 : ti ą 0 y
ÿ

i

t2i
a2
i

“ 1

+

.

Sea pgiqiě1 una sucesión i.i.d. de variables Gaussianas estandares. Consideramos el proceso Xt “
ř

tPE tigi. Mostrar
que

E
„

sup
tPT

Xt



ď

˜

ÿ

iě1

a2
i

¸1{2

ď

˜

ÿ

ně0

2na2
2n

¸1{2

.

8. En esa pregunta queremos probar que el orden de
ř

ně0 2n{2en is of order larger than p
ř

ně0 2na2
2nq

1{2. Sea

En “

#

t P R2n : ti ą 0 y
ÿ

i

t2i
a2
i

“ 1

+

.

(a) Mostrar que enpEnq ď enpEq.
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(b) Sea B la bola unitaria Euclidiana de R2n , sea T Ă En un conjunto �nito t.q |T | ď Nn y sea ε ą 0. Mostrar que

Vol pYtPT pεB ` tqq ď p2εq
2n VolpBq.

(c) Mostrar que VolpEnq ě a2n

2n VolpBq. Deducir que En Ă YtPT pεB ` tq ùñ 2ε ě a2n .

(d) Finalmente, probar que enpEq ě a2n{2 y concluir.

En generalidad completa, la cantidad infAn admisible suptPT
ř

ně0 2n{2∆pAnptqq siempre tiene el orden de magnitud correcto
aun que la cota de Dudley es demasiado conservativa.
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20.3 Tarea 3

Digamos que una función f : Xn Ñ r0,8q tiene la propiedad de ser acotada por si misma si para cada i existe una función
fi : Xn Ñ R tal que

0 ď fpx1, . . . , xnq ´ fipx1, . . . , xi´1, xi`1, . . . , xnq ď 1

y
n
ÿ

i“1

fpx1, . . . , xnq ´ fipx1, . . . , xi´1, xi`1, . . . , xnq ď fpx1, . . . , xnq.

Notaciones :

1. EntpXq “ E rX logXs ´ EX logpEXq

2. Xpiq “ pX1, . . . , Xi´1, Xi`1, . . . , Xnq y Epiqr.s “ Er.|Xpiqs.

3. EntpiqpXq “ EpiqrX logXs ´ EpiqX logpEpiqXq.

4. φpuq “ eu ´ 1´ u.

5. ψZ´EZpλq “ logE
“

eλpZ´EZq‰

Se admite la desigualdad de sub-aditividad de entropías : EntpZq ď E
řn
i“1 Ent

piq
pZq.

P.1 Sea I Ă R un intervalo abierto y f : I Ñ R una función convexa y derivable. Sea X una variable tal que X P I.
Mostrar que

E rfpXq ´ fpEXqs “ inf
aPI

E
“

fpXq ´ fpaq ´ f 1paqpX ´ aq
‰

P.2 Sea Y una variable no negativa tal que E rY log Y s ă 8. Mostrar que

EntpY q “ inf
uą0

E rY plog Y ´ log uq ´ pY ´ uqs .

P.3 Sea Zi una función de las variables en Xpiq. Mostrar que

Entpiq
`

eλZ
˘

ď Epiq
“

eλZφp´λpZ ´ Ziqq
‰

.

P.4 Mostrar que

Ent
`

eλZ
˘

ď

n
ÿ

i“1

E
“

eλZφp´λpZ ´ Ziqq
‰

.

P.5 Justi�car que @λ P R y @u P r0, 1s, φp´λuq ď uφp´λq. Sea Z “ fpX1, . . . , Xnq donde f es acotada por si misma.
Deducir la desigualdad diferencial

ˆ

ψZ´EZpλq

eλ ´ 1

˙1

ď EZ ¨
ˆ

´λ

eλ ´ 1

˙1

P.6 Mostrar que logE
“

eλpZ´EZq‰ ď φpλqEZ y que P pZ ě EZ ` tq ď exp
´

´ t2

2EZ`2t{3

¯

Una variable de�nida por una función acotada por si misma se concentra.
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Preguntas opcionales :

Una propiedad Π de�nida sobre una union �nita de productos de un conjunto X es una secuencia Π1, . . . ,Πn tal que
Π1 Ă X , . . . ,Πn Ă Xn. Digamos que la px1, . . . , xmq P Xm satisface la propiedad Π si px1, . . . , xmq P Πm. Una propiedad
es hereditaria si por cada secuencia px1, . . . , xmq que satisfaga la propiedad Π cada sub-secuencia pxi1 , . . . , xikq satisface Π.

P'.1 (Ejercicios Hora 3) Sea f acotada por si misma y Z “ fpX1, . . . , Xnq donde los Xi son variables aleatorias inde-
pendientes. Mostrar que VarpZq ď EZ.

P'.2 Sea Π una propiedad hereditaria. Para cada px1, . . . , xmq, se asocia el tamaño máximo de una sub-secuencia de
px1, . . . , xmq que satisfaga Π. Denotamos fΠpx1, . . . , xmq este valor. Mostrar que fΠ es acotada por si misma.

Una función f tal que existe una propiedad Π tal que f “ fΠ se llama función de con�guración.

P'.3 Sean X1, . . . , Xn i.i.d. discretas. Sea Z el numero de valores distintos que tomen las variables X1, . . . , Xn. Mostrar
que Z es una función de con�guración de las X1, . . . , Xn.

P'.4 (Utilizamos las notaciones de la tarea 2) Para una clase A de subconjuntos de Rd y elementos x1, . . . , xn P Rd,
digamos que A rompe px1, . . . , xnq si |Apxn1 q| “ 2n. Denotamos V CpA, xn1 q el tamaño máximo de una sub-secuencia de
px1, . . . , xnq que está rota por A. Mostrar que este noción de dimensión VC es una función de con�guración.
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20.4 Tarea 4

El objectivo de esta tarea es investigar condiciones sobre distribuciones para que éstas sean de�nidas en forma única por
sus momentos. Dada una medida µ, de�nimos para cada p P N, el momento de orden p como

µp “

ż

xpdµ.

Denotamos comoMpRq al conjunto de medidas de probabilidad sobre R que tienen momentos �nitos de cualquier orden
yMpR`q las medidas de probabilidad sobre R` que tienen momentos �nitos de cualquier orden. Dada una sucesión real
m “ pmpqpPN, sean

Kpmq “ tµ PMpRq : @p P N, µp “ mpu (Problema de Hamburger)

y
K`pmq “ tµ PMpR`q : @p P N, µp “ mpu (Problema de Stieljes)

las soluciones de los problemas de momentos de Hamburger y de Stieljes. Decimos que una variable aleatoria X con
sucesión de momentos m es únicamente de�nida por sus momentos (UDM) si Kpmq tiene un único elemento.

P.1 Mostrar que una variable aleatoria X tal que E rXs “ 0, E
“

X2
‰

“ 1 y E
“

X4
‰

“ 1 es igual (en distribución) a una
variable de Rademacher (que vale 1 con probabilidad 1

2 y ´1 con probabilidad 1
2 ). Dar un ejemplo de secuencia m tal que

Kpmq “ H.

En el siguiente, suponemos que m es tal que Kpmq ‰ H.

P.2 Sea X una variable aleatoria de medida µ PMpRq de soporte �nito y sea m la sucesión de los momentos µp de µ.
Mostrar que X es UDM. Pista : Para mostrar que

ř

zix
p
i “ 0 implica @i, zi “ 0 considere una formulación matricial y

use el determinante de Vandermonde.
Mostrar que, efectivamente, X es UDM µ1, µ2, . . . , µ2n donde n es el numero de átomos de µ.

P.3 Suponemos que µ es de soporte compacto. Usar el teorema de Portmanteau para probar que X es UDM.

P.4 Una variable beta pα, βq es una variable aleatoria de densidad sobre r0, 1s igual a

fpxq “
Γpα` βq

ΓpαqΓpβq
xα´1p1´ xqβ´1.

Calcular los momentos de una variable beta pα, βq. ¾Qué podemos decir de una sucesión pXnqn de variables aleatorias tal
que para cada p P N tenemos

E rXp
ns ÝÑ

nÑ`8

p´1
ź

i“0

α` i

α` β ` i
?

Recordamos el siguiente teorema :

Teorema Una función holomorfa en un abierto U que vale 0 sobre un conjunto que tiene un punto de acumulación de
U es nula sobre todo U . Los interesados pueden encontrar el teorema y su prueba en el libro: Real and Complex analysis,
1987, W. Rudin

P.5.a Mostrar que para cada w ą 0 y cada z P C tal que <pzq ą 0 (parte real es positiva),

ż `8

0

tw´1e´ztdt “
1

zw
Γpwq.

P.5.b Sea g : R ÞÑ R,
gpxq “

2

3
?
π
|x|´2{3 expp´|x|2{3q cos

´π

3
`
?

3|x|2{3
¯

.

Mostrar que para cada p P N,
ż `8

´8

xpgpxqdx “ 0.
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P.5.c Sea f : R ÞÑ R la función de densidad

fpxq “
1

3
?
π
|x|´2{3 expp´|x|2{3q.

Mostrar que para ρ P r0, 1{2s, f ` ρg es una función de densidad y que para cada p P N,
ż `8

´8

xpfpxqdx “

ż `8

´8

xppf ` ρgqpxqdx

Deducir que X, cuya densidad es f , no es UDM.

P.5.d Sea m tal que si p es par mp “ 0 y si p es impar mp “ p3p´ 1qp3p´ 3q . . . 1. ¾Qué podemos decir de Kpmq?

P.6.a Mostrar que Kpmq es un conjunto convexo.

P.6.b Mostrar que Kpmq es un conjunto compacto.

P.7 Mostrar lo siguiente:

Proposición Sea X una variable aleatoria sobre R de medida de probabilidad µ P MpRq. Suponemos que la se-

rie de Laplace
ÿ

pě1

µp
p!
zp

es de radio de convergencia no nulo, entonces X es UDM.

P.8.a Calcular el radio de convergencia de la serie de Laplace para X una variable N p0, 1q. Deducir que X es UDM.

P.8.b Calcular los momentos de Y “ exppNq, donde N „ N p0, 1q. ¾Qué el radio de convergencia de la serie de Laplace?

Admitimos el teorema siguiente:

Teorema Sea X una variable de densidad f positiva sobre R`. Si

ż `8

0

´ log fptq

1` t2
dt ă `8,

entonces X no es UDM.

P.9.a Mostrar que la variable aleatoria Y de�nida en P.8.b no es UDM.

P.9.b Sea Z “W 3 donde W es una variable aleatoria exponencial de parametro 1. Mostrar que Z no es UDM.
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