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Chapter 1

Preface

These notes, were essentially written during the first two years of my doctoral course at CIMAT, Mexico. As a student, I
had the chance to have access to very well designed courses notes from my professors at the ENS Cachan and Université
Paris Saclay which helped at lot in the learning process. This work is written in a way that it is as self-contained as I
possibly achieved to, to quickly familiarize students with the beautiful notions around empirical processes and Dudley
entropy theory.

These themes cannot be tackled without a quick tour by the classical convergence theorems in finite dimension spaces -
where we speak about random vectors. This guided tour passes also rapidly through the simple 1D world as a excuse to
look deeper into the important definitions in probability theory.

As a pedagogic material, this notebook pretends - T am aware of the gluttony for real life illustration asked by my students
- to give enough instructive examples to get our hands on motivating application problems. [To continue]

Prerequisities: We assume known the following notions.
e Basic definitions of mathematical tools (sequences, integrals, limits, continuity, topology, limsup, liminf)

e o-algebras, measurability, measures, probability measures, random variable, expected value, variance, independence,
distributions.

e Classical theorems of integration (Monotone convergence, Dominated convergence, Fatou’s Lemma,...)

e Classical distributions (Bernoulli, Binomial, Poisson, Exponential, Normal)

1.1 Notations and definitions

Vector space of finite dimension Let E be a vector space of finite dimension. As real vector spaces of same dimension
are (linearly) equivalents, we will assume E = RF for some k € N fixed one and for all as it permits us to simplify our
notations.

Sets of functions We denote by C,(R¥) the set of continuous and bounded functions f : R* + R. For a measure y on
R* and p > 1, we denote by LP(R*, 1) the set of measurable functions f : R¥ — R such that {|f[Pdu < +co. If 4 is the
Lebesgue measure on R¥, the set LP(R¥, i) will be simply denoted by LP(R¥).

Notations op and Op For a sequence of random vectors (Z,), and a sequence (k,), € (R4)N, we denote by

o Z, = Op(ky) if lim Tim P(|Z] > Tky) =0,
T—+0w

o Z,=op(ky)ifforall e >0, lim P(|Z,|>¢ek,) =0
n—+w
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Chapter 2

Convergence of random variables

The purpose of this chapter is to prepare the reader to enter in the field of empirical processes slowly by stating and
proving the famous theorems as Law of Large Numbers (LLN) or Central Limit Theorem (CLT) which have made the
popularity of Probability theory in the last century. A lot of this chapter is inspired by the excellent [19].

2.1 Modes of convergence

Definition 1. A random wvector is a random variable X : Q — RF where we implicitly associated to Q0 and R* (with
k € N*) their respective Borelian o-algebra. A sequence of random vectors will be usually denoted by (X, )nen € (RF)N.

Definition 2. Let (X,)nen € (RF)Y be a sequence of random vectors and X a random vector in R*. Their respective

probability measures are denoted by ji,, and p. Let d be a distance on R and | - || be the usual norm on R*. We say that,
1. (X,)nen converges in probability to X, denoted by X, LN if Ve > 0, P(d(X,,X) >¢) — 0.
n—ao0
2. (Xn)nen converges in distribution or weakly to X, denoted by X, ), X or X, L) X if Yh € Cy(RF), §hdp, —
n—0o0
§ hdp.
3. (Xp)nen converges in almost surely to X, denoted by X, *> X if I < Q,Vwe I, X, (w) — X(w) and T¢ is
n—aoo0
negligible.
4. (Xp)nen converges in LP to X, denoted by X, Lr, x if
VneN, E[|X,|P] < 4+ and E[|X,, — X||’] — 0.
n—o0
5. (Xn)nen converges in total variation to X, denoted X, IV X, if supp |P(X,, € B) —P(X € B)| — 0, where
n—0o0
the supremum is taken over the set of Borelian measurable sets B.
Remarks

e In 2., it is not required to have the random variables X,, and X to live in the same probability space whereas the

other four type of convergence do require this fact.

e In 4., the triangular inequality implies E [|| X[|P] < +c0.

e In the convergence in probability, since we are dealing with R* (a vector space of finite dimension), all the distances

are equivalent. This is to say, for any two distances d and d’ on RF, there exists ¢,C > 0 such that, for every
z,y € R*
ed'(z,y) < d(z,y) < Od'(2,y).

It implies that the notion of probability convergence that we consider is not dependent on the chosen distance. When
not specified differently, we will always consider the euclidean distance.

The following Lemma simplifies the task of proving weak convergence and will be a key tool for the upcoming results.

Lemma 1 (Portmanteau). Let (X,,)nen and X be random vectors. The following properties are equivalent:

11



12 CHAPTER 2. CONVERGENCE OF RANDOM VARIABLES
i) X, % x

it) Y[ function Lipschitz and bounded, E[f(X,)] — E[f(X)].

n—o0
iit) VF closed set, limsupP (X,, € F) <P (X € F).

iv) VG open set, iminfP (X, € G) =P (X € G).

v) VA Borelian s.t. P(X € 0A) =0,P(X,e A) — P(X € A).

n—oo

Proof. i) = 1ii) is obvious since Lipschitz bounded functions are in particular continuous and bounded.
ii) = iv) Let fi(z) = min(kd(z, G¢),1). This function is Lipschitz by the Lipschitzness of the distance. It is obviously
bounded. Moreover, for every z, fi(z) converges increasingly to 1g(x). Hence,

lim inf P (X,, € G) > lim inf E [£(X,,)] P B [ £ ()] — P(XeG)

where the last fact holds by monotone convergence.
iii)<> iv) is obvious by completion.

iii) 4+ iv) = v) Take any Borelian set such that P (X € #A) = 0. Then, using iii) for the closed 4 and iv) for A, we get

lim supP (X,, € A) < limsupP (X,, € A) <P (X € 4).
N Il
liminfP (X, € A) > liminf P (Xn € 21) >P (X e ,51) .

This chain of inequalities finally imply that
P(X,eA) — P(XeA).

n—o0
v) = iii) Let F be a closed set of R* and define for any 3 > 0,
Fg={x:d(z,F) < B}.
The elements of the familly (0F3)s>0 are disjoint. Then
DI P(XedFs) <P(XeRF) =1
5>0

The previous convergence has to be understood as the sumable (see Definition 18 and Proposition 31) then the sum has
only finite number of non zero terms:

{8>0:P(X € 0Fs #0) is a countable set.
From that we can define a sequence (f)x such that Sy — 0 and such that
VkeN, P(X € 0Fg, ) =0.

Then
limsup P(X,, € F) <limsup P(X,, € F3,) = lim P(X, € Fs,) = P(XeFg).
n—+w n—+00 n—+w0 by v

We finish by taking the infimum in k.

iii) = i) Let 0 < f < 1 be a continuous function. Using the classical (15.4) and Fatou Lemma, we get

1

limsupE [f(X,,)] < L limsupP (f(X,) = z) dx

< j P (f(X) > 2)dr = E[f(X)].

by iii) Jo

We used that the set {f(X,) = 2} = {X,, € f~}([x, +o0)} where the set f~1([z, +0) is the inverse of a closed set and is
then closed by continuity of f. Applying the same ideas for 1 — f gives the convergence

E[f(Xn)] — E[f(X)].

n—0o0

Then the general case follows from this by using the transform ¢ := i:g fora < f <b. O
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Many of the convergences of interest are robust under a continuous transformation. Precisely, we have the

Theorem 1 (Continuous transformation). Let g : R¥ — R™ be a continuous function. Then,

o X, DX, then g(X,) 1% g(X).

o If X, = X, then g(X,,) — g(X).
o If X, “5 X, then g(X,)) “5 g(X).

One could be interested in a result where g is only assumed to be continuous except on a specific set of points. The results
are still true in this context if one assumes that this set of problematic points is not seen by the random variable X.

Proof. We prove in order:
e Let F be a closed set in R™. Then,
limsupP (g(X,) € F) = limsupP (X,, € g~ ' (F))
<P(Xeg '(F)=P(g(X)eF).
which implies the weak convergence.
o Let ¢ > 0 and § > 0. We can decompose
P (d(9(X,), 9(X)) > €) < P(d(g(X0), 6(X)) > ¢ and d(X, X) < 5) — 0
+P (d(X,, X) > 9)
—.0, ¥5>0
This proves the convergence in probability.

e The almost sure convergence is obvious since it occurs on the same measurable set of probability 1.

2.1.1 Uniform integrability

Definition 3. We say that a family C of random variables are uniformly integrable at order p (denoted U.L) if
Ve >0, 3K € [0; +00) such that
E[IX[P1x)>x] <& VX eC.

When p = 1 we omit to say “of order 1.

A U.L family is bounded in L, Take € = 1 and we denote by K the constant defined in Definition 3. Then, for any
element X € C, we have that

E[|XIP] < E[IXIPLxprsr] + E[IXIPLxper] <1+ K.

Then a family that is uniformly integrable is, in particular, bounded in LL,,. Besides the following example allows us to see
that the converse is not true.

Exercice 1. Let X,, = nlg,-1). Show that E[X,] =1 and that (X,), is not U.L

Sufficient conditions for U.I. There is two very simple sufficient conditions for uniform integrability that we state
now.

Proposition 1. If either

e The family C is bounded in L, for p" > p

o The family C is bounded by a random variable Y € L,
then C is uniformly integrable of order p.

Theorem 2 (Implication of convergences). We have the following implications for X,, and X random vectors in RY.
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Dominated convergence

/—\L

a.s. )

dng a su& ﬂ(]ﬂifwm
sequence P Integrability

the limit
1s constant
(d)

The doubled arrows hold for direct consequences whereas the simple arrows hold with an extra assumption or in a weaker
version has specified by the text aside. More specifically, we have the following results.

L
1. Assume that X,, &> X and that there exists a random vector Y such that | X, | < ||Y| for any n then X,, - X.
2. Assume that X, ., X then there exists a sub-sequence (ny)x such that X, LN '

3. Assume that X, L. X and that the familly (X,,)y is uniformly integrable at order p then X, I, x.

4. Assume that X, ), ¢ where c is deterministic, then X, LN

Proof. a.s. —> P: We assume that X,, %% X.

0 = P (3 a sub-sequence ny, s.t. Vk, | X,, — X| > ¢)
=P (limsup {|X,, — X| >¢}) (seen as events)
> limsup P (| X, — X| > ¢) (Fatou for events)

and then P (| X,, — X| > ¢) — 0 for any € > 0.
P = (d): Let f be a A-Lipschitz function bounded by a constant K, then

E[f(Xn)] —E[f(O] S E[If(Xn) = F(X)ILx, —x|<c] + 2KP (| X, — X[ > ¢)

<
< e +2KP (|X, — X| > ¢)

The convergence in probability allows us to choose n large enough to get P(|X,, — X| >¢) < e. Then [E[f(X,)] —
E[f(X)]]| < (A+2K)e which shows that E [ f(X,,)] = E[f(X)]. We conclude using Lemma 1 to get the weak convergence.
L, = P: By the Markov’s inequality,

[ Xn — X|7]

E
P(|X, — X|>e) < [ — 0

cb n—o0
1. a.s. — L, is the direct consequence of the dominated convergence theorem. Indeed, by the bounded condition, X is in
L, and | X| < Y. Then we get

1Xn = X[ < V] + [ X] < 2[Y]

which is in L,,. Using, the dominated convergence theorem for the sequence (||X,, — X|?), finally gives the result.

2. P — a.s. This fact results from an interesting result in itself that we postpone to Lemma 45.

3. P — L, For simplicity, we show the result for p = 1 and X,, € R since the generalization to any p and X,, € RF is
straightforward. Let ¢ : R — [—K, K] such that

K ife>K
P =4 @ if 2] < K
-K ifz<-K

Let € > 0. Since the family (X,,), is U.L, there exists K > 0 such that

E[l¢x(Xn) = Xnll <5 V=0,

WM™

and

Ell¢r(X) - X|] <

Wl M
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By construction ¢y is 1-Lipschitz i.e. Vz,y, |¢x(z) — ¢k (y)| < |x — y| then by the continuous transformation

dr(Xp) = x(X).

We can use the dominated convergence theorem (see Lemma 35) since ¢x(X,) and ¢x(X) are bounded (and then
integrable) to see that there exists ng such that Vn = ng,

E [|éx(Xa) = o (X)) < 5.
Summing up, we get

E[|Xn = X[] < E[| X0 — ¢x (Xn)|] + E[|ox (Xn) — ¢k (X)[] + E[|lox (X) — X][] <e.

Then X,, =2 X.
4. (d) — P Let B(c,¢) be the open ball of radius € centered at ¢. Then P (d(X,,c) = ¢) =P (X, € B(c,¢)°), but

limsupP (X,, € B(c,e)¢) < P(ce B(c,e)°) =0,

by the lemma Portmanteau. Hence, P (d(X,,c) =¢) —» 0 and X, L O

Two exercises about probability convergence
Exercice 2. Define the sequence of random variables on the probability triplet ((0, 1], B((0,1]), Leb),
Yl - 1(0’1]

Yo = 10,1721, Y3 = L(12,1]
Yy =T10,1/41,Ys = L(1a,1/2], Yo = L(1/2,3/41, Y7 = L(3/4,1)

Show that this sequence is such that Y, P, 0 but has no almost sure limit. We list its basic properties in the following
proposition.

Exercice 3. Let X,, be a sequence of random variables that converges in probability towards a random variable X. Assume
that Vn e N, X,, < X,,11. Show that X,, =5 X. Hint: Use 2. of Theorem 2.

Comments In fact the convergence L, implies a little more than the convergence in probability. It also implies the
uniform integrability as pledged in Exercice 4.

Exercice 4 (L, = U.L). Assume that X, L, X. We show in that eercise that (Xn)n is uniformly integrable of order
.

1. Let € > 0. Show that there exists N € N such that Yn > N, E[|X,, — X|P] < ¢/2P.

2. Apply Proposition 32 to show that we can choose 6 > 0 such that for any E € B such that P (E) < 4, we have

E[|X.|P1p] <e/2°7', ¥Yn< N and  E[|X|PLlg] <e/2P

3. Taking K such that K~ 'sup, E[|X,|?] < d, show that (X,,), is U.L using that,
E[|1Xa|"1] X0] > K] < 227 E[|X|Lyx, 15 x] + 277 E | X5 — X7,

(We may use Lemma 29) for n > N and question 2. for n < N.

2.1.2 Simultaneous convergence

In this section, we deal with the simultaneous convergence of two random variables X,, and Y,, when it is known that
they marginally converge to two random variables X and Y. Combining their convergence is not that direct, especially
for weak convergence. In the following, the famous Slutsky Lemma is also presented as an optimal result in this direction.
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Convergence almost sure Almost nothing is needed to say here. Indeed, considering the intersection of the two
measurable sets on which X, (w) — X (w) and Y,,(w) — Y (w) results another set of probability one where simultaneously
the two convergences occur. Simultaneous convergence being equivalent to convergence for the sequence of couples in
product spaces gives the result. We keep that in mind under the short,

X, =5 X and Y, =5 Y & (X, Y,) =5 (X,Y)

Convergence in probability By the fact that for x1,y1,x2,y2, we have (for the euclidean distance)

d((z1,y1), (22,92)) < d(z1,22) + d(y1,92),

and for example,
d($1,$2) < d((xlvyl)? (x2ay2))

then, the probability convergence transmits directly in product spaces. More precisely,

X, > XandV, Y < (X,,Y,) — (X,Y)

Slutsky Lemma

Proposition 2. Let (X,,), and (Yy,), be two sequences of random vectors. Assume that X, ), X and d(X,,,Yy) E, 0,
then Y, ), X.

Proof. Let f be a 1-Lipschitz function taking values in [0, 1]. Note that imposing f to take values in [0, 1] is not restrictive
since one can always renormalize and translate a bounded function. Then,

B [f(Xn)] = E[f(Va)]] < E[d(Xn, Yn)Lacx,, v, <e] + 2P (d(Xn, Ya) > €)

<
<e+ 2P (d(X,,Y,) > ¢).
[

—s 0
n—o

Then, E[f(X,)] — E[f(X)] and the weak convergence is proved. O

n—o0

The so-called Slutsky Lemma is very useful in many areas of statistics as a powerful tool to combine the convergence of
two or more sequence of random variables to finally get the weak convergence of a possibly complex expression.

Lemma 2 (Slutsky). Assume that X, 9D, X and Y, — ¢ where c is a constant of R*. Then, (X0, Yn) LGN (X,c) and

in particular we have

o« X, +Y, D x 4o

o V., X, % cx.

e YV 1X, 9D, -1X when ¢ # 0.

Proof. We use the previous proposition with (X, c) @), (X,¢) and d((Xn, ¢), (Xn,Yn)) < d(Ya,c) - 0 where we used

indistinctly d for the distance in R* and R?*. O

Exercice 5. Prove that X, 9D X and Y, = Y is not sufficient (in general) to have (Xn,Y,) @), (X,Y). (Hint:

Consider X,, =Y, =Y and X ~Y drawn independently.)

The particular case follows from the continuous transformation of the weak convergence.

Example of application of Slutsky Lemma If one takes X1,...,X, a collection of i.i.d. random vectors such that
E[X;]=0and E [Xf] < +00. One can compute the two classical estimators,

-~ 1
X,=-> X; d S2=
nZ an "onp—1+

i=1 %

(X; — X,n)2

n 1 n
=1
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By the weak law of large numbers, X, — 0 and

-1
" iz

52— " (1 Z X2 Xi> — E[X}] - (E[X1])? = Var (X))

where we used Theorem 1 for the function g(z,y) = x — y?. The central limit theorem also gives that /n X, @,

N(0, Var (X)) which, combined with Slutsky’s Lemma, implies

X, @
Vi 9D A0, 1).

n

This last property allows to design confidence intervals for the mean E [X] of a sample of unknown common variance.

2.2 Exercices

Exercice 6. Let (X,,)n>0 a sequence of real random variables.

1. Show that the convergence in distribution of (X,,)n>1 s NOT equivalent to “ For any continuous function of compact
support f, the sequence (E(f(X,)))n>1 converge.”

2. Show that the convergence in distribution of (X, )n>1 is equivalent to “For any continuous function of compact support
f, the sequence E(f(X,)) —— E(f(Xy)).”
n—o0

1
3. We assume that X, L, Xo.
n—oo

(a) Show that for any fized € > 0, there exists § > 0 such that E(|X,|1x,er) < € for alln = 0 and any F € B(R)
such that P(F) < 6.

1
(b) Deduce that if X, L, Xo, then X, _F, Xo y (Xn)n=o0 is uniformly integrable.
n—0o0 n—o0

Exercice 7. Let (X,,)n>1 be a sequence of random variables.

1. Assume that (X,,)n>1 converges in distribution to a standard gaussian random variable N. Is there convergence of
E(|X,|?) towards E(|N|P) for any p > 17

2. Show the converse: If the sequence E(|X,|P) converges to E(|N|P) for all p = 1, then (X,,)n>1 converges in distribu-
tion to the standard gaussian variable N.

Exercice 8. Let (X,,)n>1 be a sequence of real random variables with support included in Z.

1. We assume that (X,)n>1 converges in distribution towards X. What is the support of X ¢ Show that for any x € Z,

P(X, =2) — P(X = z).

n—0o0

2. Assume that X is a real random variable and that for all x € Z,

P(X, =2) — P(X = z).

n—00

What should verify X so that X,, converges to X ?

Exercice 9. Let (X,,)n>1 be a sequence of binomial random variables of parameters (n,1/n). Let (Y,)n>1 be a sequence of
random variables such that for any © < \/n, conditionally to X,, = ©, we have that Y,, = x and otherwise, conditionally to
X,, = x, we have thatY,, is a binomial random variable of parameters (z!, %) Show that (Y,)n=0 converges in distribution
and describe the limit.

Exercice 10. Let X be a random variable of support included in Z and with distribution

C

P(X=n)= -
( n) 2n2log |n|’

for all n € Z*.
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1. Show that X has no moment of order 1.
2. Calculate the characteristic function ¢x of X.
3. Show that ¢x is differentiable on R.
Exercice 11. Let Z be a random variable with uniform distribution on [—1,1].
1. Compute the characteristic function of Z.

2. Show that there is no i.i.d. random variables X,Y such that X —Y ~ Z.



Chapter 3

Distribution function

For a random vector X = (Xi,..., X}), the function Fx : R* — [0,1] and given by
Fx(x1,...,2p) =P (X1 <21,..., Xp < 7p)

is called the distribution function of the random vector X. In the real case, it is obvious to see that the distribution
function is no-decreasing. The vectorial case is a little different in the notion of monotonicity of Fx. We say that a
function f is 2-increasing if for any two coordinate ¢ and j in {1,...,k}, we have Va < y and Vu < v,

AW AU £ >0,

T,y —u,v
where AY) = (fO(-,b) — fO)(-,a))/(b — a) and f@(-,z) holds for the function
(1‘1,. ey Lj—1s Lj41y - ,Jfk) > f(xl,. ey Lj—1s Ly Tjg1y -+ - ,Z‘k).

Proposition 3. We have the following. For two vectors x,y of RF, we denote by x < y if each coordinate of x is smaller
than each coordinate of y.

a) Fx is a 2-increasing function.

b) Denoting by x — +oo* the fact that each coordinate of x tend to +o0 and by x — —oo“* the fact that at least one
of the coordinates converges to —oo, we have that

lim Fx(z)=1 and lim Fx(z)=0.

z—+ook z——00vk

¢) Fx is right-continuous.
Proof. Obvious. O
Remark 1. The notion of right continuity is to be understood in its weak version. It is formally defined as

‘For any sequence (x,,), € (RF)N decreasing (coordinate by coordinate) to x, Fx (1) = Fx(z)’
n——+0o

A natural question is to ask whether or not those are the maximal properties that a distribution function have in full
generality. We can answer by the affirmative thanks to the following section.

3.1 Existence of random variables of given distribution function

In this section, we will use the important Carathéodory extension theorem. See Theorem 34

Proposition 4. Let F : RF — [0, 1] which satisfies a),b) and c) of Proposition 3 then there ezists a random vector X € R¥
such that Fx = F.

Proof. We treat the case k = 2 since the general case is a direct generalization of this case. Assume given the function
F :R? > [0,1] and let ¢ be the algebra (in the sense of Definition 17.1.1) of all the sets which are Cartesian product of

sets of the form
(a,b], (—,b], (a,+x), R, & where a,b € R.

19
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One can directly construct a countably additive map pg : X9 — [0, 1] corresponding to the natural meaning of a distribution
function. For example for the set A = (a,b] x (¢,d] (where a < b and ¢ < d with a,b,¢,d € R = R u {—0, +0})
corresponding to a event of the form

{a<X1<b&c<X2<d},

one would associate the value po(A) := F(b,c) — F(b,c) — (F(a,d) — F(a,c)). The first property of Proposition 3
implies that po(A) is always a positive quantity. Also note that, in order to be consistent, we need the conditions
F(—00,-) = F(-,—o0) = 0 that are given by the second point of Proposition 3. The countably additive property of g
follows easily from the right-continuous property of F. Hence Carathéodory theorem allows us to extend p to the o-algebra
generated by X which is the Borelian sets. Hence, one have constructed a measure on R? (and hence a corresponding
random variable X) such that px has distribution function F'. O

In the following result, we state and prove a Lemma that is at the basis of the characterization of the convergence in
distribution by the distribution functions.

Lemma 3 (Helly). Let (F,), be a sequence of distribution functions on R¥. Then, there exists a non decreasing right-
continuous function F such that 0 < F < 1 and a sub-sequence (n;); such that

lim F,,, () = F(x) for each point x of continuity of F.
1—00

Be careful Lemma 3 is not sufficient to ensure that the resulting object F' is a distribution function. Indeed, it is
completely possible to be facing a case where

lim F(z) #0or lim F(x) # 1.

z—>—00k z—>00k

This comes from the fact that P(R¥) is not compact in general. One can see that by considering the sequence (py, ), such
that p1, = d(y,... n) Which has no sub-sequence that converges to a probability measure. Besides, the interested reader may
be pleased to know that Riesz representation theorem makes of P(RF) (embedded with the weak topology) a compact
metric space.

yeeey

The following definition makes clear the suitable assumption to make to avoid dealing with the non-closed case of Helly’s
lemma.

Definition 4 (tension of measures). A sequence (iin)n in P(R¥) is said to be tight if
Ve > 0,3K >0 s.t. for all n,p,([-K,K]*) >1—¢
Note that for the measures of a sequence of random vectors (X, )., the previous definition is equivalent to

IEIJIrloos?lpP(HXnH >z)=0.

Exercice 12. Show that the last assertion is true.
We have the final

Lemma 4. Let (F,), be a sequence of distribution functions on R* such that

lim F,,(z) = F(x) for each point x of continuity of F.

n—0o0
Assume furthermore that (F,), is tight. Then, F is a distribution function on RF.
Proof. Since for all n, F,,(K) = p,([-K, K]*¥) = 1 — ¢, it holds that

lim F(z)=1

x— 00k

For any x = (x1,...,73) € R¥, F, (=K — 1,29,...,2%) = pn((—0, —K — 1] x (=00, 23] x -+ x (=00, 7;]). But since the
two sets (—00, —K — 1] x (=00, x5] x - -+ x (=00, 73] and [~ K, K]* are disjoints, we have

pin (=00, =K — 1] x (=00, 23] X -+ x (=0, 2%]) <1 — pn([-K, K]¥) <,
and then
lim Fx(x)=0.

r——oovk
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The counter example fails to verify the tension condition as state in the following exercise.
Exercice 13. Show that i, = dy,... n) 18 not tight.

Proof of Helly’s Lemma. We have the inclusion of the countable set Q¥ — RF. Let ¢i,q2,... be a enumeration of the
elements of Q. The sequence (F,(q1)). is a bounded sequence of (in [0,1]) reals. Then, by compactness, one can
extract a sub-sequence such that F, ;)(q1) — H(q1) where the notations n(1,j) and H(q;) hold respectively for the
extractor sequence and for the limit. Now, the sequence (F,(1 )(¢2)); is also a sequence in [0, 1] and another extraction
n(2,7) < n(1,) gives that F,(5 ;y(g2) — H(g2). Hence one can construct a sequence of extraction such that

Vi, Frog () s H(q;).

We finally have that Vg € QF, H(q) = lim Fr(ii)(q). It is obvious to see that 0 < H < 1 and that H is a 2-increasing
17— +00
function on Q*. We define, Vo € R* F(z) := Iif(q) it always exists since it is the limit of a decreasing sequence. It
qlx

may not be clear that the function F is well defined. Let (g,,), and (q},). be two sequences such that ¢, |  and ¢, |
and let F(z) be the limit defined by (g,), and F’(z) be the limit defined by (q},)». By the fact that ¢, — z, one can
extract a sub-sequence g,, such that Vi, g,, < ¢;. Now, taking the limit in ¢, of H(g,,) < H(q;) gives F(z) < F'(z). But
symmetrically, F'(z) < F(z) and the function F is well-defined. By construction, we have that F is right-continuous and,

Froii(x) — F(x) for every point of continuity of F.

When the limiting function F' is continuous, we have a stronger result.

Proposition 5 (Glivenko-Cantelli). Let (X,,), be a sequence of random variables in R of distribution function (F,),.

Assume that X, ), X where we denote by F' the distribution function of X. Assume that F is continuous on R, then

sup |F,(z) — F(z)| — 0.

z€R n—o0
Proof. Let m € N* and let —00 = 9 < 21 < -+ < &, = +00 such that F(z;) = i/m. This is possible since F is continuous.
(The z; may not be unique.) Then, for any x € [z;_1, 4],

Fu(@) = F(@) < Pa() = (i) = Fueg) = Pla) +

In the same way, we have that F,(z) — F(x) = F,,(z;-1) — F(2;-1) — --. From those two facts, we have that

1
m

sup |Fp(z) — F(z)| < sup |Fp(z;) — F(z;)| + %

zeR 0o<is<m

Now, let € > 0 and fix m < 2/e such that 1/m < /2. Remark that the supremum is taken over a finite family of random
variables so the classical law of large numbers (Proposition 10) can be applied m + 1 times to get that for n large enough,

sup |Fn(x;) — F(x;)] <

oism

N ™

This concludes the proof. O
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Chapter 4

Levy theorem

Levy’s theorem is one of the building blocks of the study of characteristic functions. It characterizes the convergence in
law of random variables through the convergence of their Fourier transforms. It is one of the simplest way to prove the
CLT for random vectors. Before going through the theorem itself, one need to develop a few tools in the area of functional
analysis and Fourier transform in LP.

4.1 Characteristic function
For a random variable X of measure y, the function defined for any t € R¥,
ox (1) = E [exp(it - X)]

is called characteristic function. This notion is deeply linked with functional analysis. Indeed, the Fourier transform
of a measure is defined as

Fue) = | exp(—iz- (o)

so that we have ¢x(t) = Fu(—t). From this fact, all the properties that are possible to show on the Fourier transform
can be settled for characteristics functions and vice versa. Some authors like to presents ad hoc proofs on characteristic
functions. We choose to write things in a way that it is close in notation and spirits to the functional analysis literature.

4.1.1 Basic properties of the characteristic function

Proposition 6. Let X be a random vector and let ¢x be its characteristic function. We have the following facts.

1. ¢x(0) = 1.

2. For allt e R¥, |px (1) < 1.

3. On R*, the function t — ¢x(t) is continuous.

4. For anyaeR and be RF, ¢oxip(t) = e®tox(at).

5. If forne N, E[|X|"] < o0, we have

M ox(t) = E[(iX;) e
and 0 ox (0) = i"E[(X;)"]

Proof. All the statement are simple use of classical results in integration as dominated convergence theorems. O

It is important to know that most of the classical distribution have explicit formulas for the characteristic function.

Example 1. The caracteristic function of N'(u,c?) is

o?t?
VteR, ¢,2(t) =exp <it,u - 2) .

23
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Proof. A random variable X ~ N (u,0?) can be written X = p+ 0Z where Z ~ N (0,1). So, ¢, ,2(t) = e**¢(ot) where

¢ is the characteristic function of Z. It is sufficient to prove ¢(t) = e~*"/2. Since the density function fo,1 of N(0,1) is
symmetric, we have that Vt € R, ¢(t) = ¢(—t) hence,

¢(t)=¢<t)+¢(—t)=JRW

1 22
z)dz = | cos(tz)—e™ 2 dz
5 5 fo1(2) fR (tz) Ton
and then ¢(¢) is real. By the theorem of derivation under the integral and integration by parts,

& (t) = JR sin(tz)\/—%_e*%dz =— J}thos(tz)\/%e*édz = —tp(t).

This simple linear equation takes as solutions the functions ¢(t) = e t/2 4 C, but (0) = 1 then C = 0. Finally, the only
possibility is ¢(t) = e t7/2. g

4.2 Fourier analysis

4.2.1 Convolution of measures

For p probability measure (see [11] for more general measures) and f a function integrable with respect to u, we define
the convolution of a function by a measure f * u by

freuian [ fe-piu).
Rk
Also, the convolution between two measures i and v is given by
VA measurable, p*v(A)= f Lyyyeadp(x)dv(y)
Rk xRF

where A and B are the respective o-algebras of 1 and v. It will be checked in the appendix that p*v is indeed a probability
measure on R* in Fact 1. It is shown in appendix the habitual:

Proposition 7. The Fourier transform satisfies the following basic properties. For j and v two probability measures,
o [ Fule < 1.
o Fluxv)=(Fu)x (Fr).
The convolution of measures is very convenient to compute the distribution of sums of independent random variables.
Proposition 8. Let X ~ p and Y ~ v be two independent random variables and let Z = X +Y. Then
i) Z has the probability law given by u* v.
it) If X has a continuous bounded density f, then Z has a continuous density given by f * v.

The second fact can be useful when one wants to smooth some distribution Y by a small X in order to get a random
variable Z that has a density.

Proof. Point i) can be seen on all borelians of the form (—oo, a], for example. Point i) can be seen using that Vh lipschitz,

B[W(Z)] = E[X + V)] = [[ Ao + ) f(@)dzdviy) = [ h(:) ( | 1= y)du<y>> 2.
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4.2.2 Inversion formula

Parseval Identity Let X and Y be two random variables taking values in R¥ of respective measures x and v. Finally,
we denote by ¢, the characteristic function of X and by ¢, the characteristic function of Y. We get that, for any ¢ € RF

expl=i§ - 1)6,(6) = | expli€ (o~ )du(z).

Under the condition that ¢, € L1(R*,v) (integrable with respect to v), integrating both sides with respect to v and using
Fubini’s theorem give that

j exp(—i€ - 1)y (€)d(€) = j 6z — t)dp(z). (4.1)
RE RE

This equation is called Parseval inequality. It has to be understood as a continuous version of the Perseval inequality
for periodic functions. As for Fourier series, it is a inversion formula that permits to link the norms of the transform of a
function (here the characteristic function) and of the function itself.

Special case When one specify the previous identity where one takes v to be a normal probability measure, centered
and of variance 021, the previous identity takes the form

ok

G |, explie - 00,6) exp(—gotde = | exp (_M) ()

202

where the square of a vector has to be understood as the square of its norm.

Inversion Formula We are now ready to give the complete proof of the inversion formula.

Theorem 3. Let j1 be a borelian measure of probability on R* let X be a random variable of measure . Denote by ¢, its
characteristic function. Then ¢, € L1(R*) if and only if  admits a continuous and bounded density f (on R¥) given by

1 .
@) = oy |, explio 0,01 (4.2

Proof. Assume that X has a density given by fx. We, now, show that f given by Equation (4.2) coincide with fx. The
idea is to use Fubini theorem to exchange the order of integration of y and £ but the lack of integrability prevents us to
use it directly. For that purpose, we introduce a quantity on which it is possible to use Fubini’s theorem and then see
that it approximates the case of interest. Let

Ie(z) = (Qi)k JJ exp(i(z —y) - §) exp ( —¢? éh2)d/~t(y)d5.

2
RE xRk
By integrating in y (implicitly using Fubini theorem) we get that

2 &

— 25 ) Bu(—€)dg

1L(0) = G |, explin-€)esn (

and then taking the limit for ¢ — 0 and using dominated convergence theorem, we get

. 1 ‘
li L (2) = fyye | (e 96,6 = ().

On the other side, by integrating first on the variable &, we get

10) = e [, ([, e (12— 00-€) exp (=25 )t iy

_ W%E)k J exp - E ;j’” ) ey

The quantity converges (in L;(R¥)) to fx(x) since the function p. defined by

1 1 22
pe(2) = ;kP(Z) where p(z) = W eXp(—g)
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is a regularizing function (see Proposition 34). By unicity of the limit, fx = f. The fact that X has a density implies
éx € L1(RF) is obtained by considering |¢x (€)| = \/ox (£)o_x (&) and

|¢X \/ f f sin(4 ))fx( ) (y)dardyde

which is trivially upper bounded. For the other sense, the existence is the consequence of Equation (4.2) which gives the
continuity of fx by use of dominated convergence theorem. O

4.2.3 The characteristic function characterizes the law
The characterization of the law of a random variable is given by Theorem 3.

Proposition 9. Let X and Y be two random vectors such that ¢x = ¢y. Then, the distribution of X and the distribution
of Y are equal.

Proof. Let Z ~ Ny(0,1) be a gaussian random vector independent from X and Y. Let o > 0 and the two random vectors
Xo=X+0Zand Y, =Y + 0Z so that ¢x, = ¢y, (use Proposition 6). By Proposition 8, X, and Y, have continuous
and bounded density. Now, using Theorem 3 we have that X, ~ Y. Letting 0 — 0, we see that X ~ Y by unicity of the
limit for the convergence in distribution. O

4.3 Levy’s theorem

Theorem 4. Let (F},),, be a sequence of distribution functions on the space R* and for anyn € N let ¢,, be the characteristic
function of F,,. Suppose that

#(0) := lim ¢,,(0) ewists for all 6 € R¥.
Then, the following are equivalent.
i) The sequence (X,,), is tight.
it) The function ¢ is a characteristic function.
i) The function ¢ is continuous at any 0 in R*.
iv) The function ¢ is continuous at 0.

In particular, when one of these conditions is verified, there exists a distribution function F (hence there ezists a random
variable X ~ F') such that ¢ = ¢r and
F, RONy? (or equivalently X, ), X).

Proof. We have ii) = iii) from Proposition 6 and iii) = 4v) is obvious.

i) = ii) By Helly Lemma (in Lemma 3), one can extract a sub-sequence nj such that F,, ), F. where F is a

distribution function (by the tightness of the sequence). By Lemma 1, we have that ¢,, — ¢ (pointwise). Obviously,
one has to be careful about using Lemma 1 for Lipschitz function of complex values but one can always decompose
€% = cos(6X) + isin(6X) which are two real valued bounded Lipschitz functions. By unicity of the limit, we have
¢ = ¢ and then ¢ is a characteristic function.

Proof of the last sentence We just showed the existence of the distribution function F. Now assume that F,, do not
converge weakly to F. Then, there exists a point of continuity x of F' (the set of points of continuity is never empty since
the points of discontinuity are at most countable) and 1 > 0 such that there exists a sub-sequence (n;); such that

|Fni(x) = F(x)] = n.

By another use of Helly’s lemma, one can find a sub-sequence of (n;); denoted (n;,); such that I, 9, F where F is

a distribution function (by the tightness of the original sequence). Hence, ¢)m — ¢p = ¢r. By the uniqueness of the

characteristic function (by Proposition 9), we have F' = F and then F,, (@) — F( ) which is absurd.
iv) == i) We first show the result in dimension 1 (k=1). Let ¢ > 0. The quantity ¢, (0) + ¢,(—0) is real and bounded
(by 2). By continuity of ¢ in 0, we can find 6§ > 0 such that V|0 < 4§, |1 — ¢(0)| < /4 and

s
0< 5*1J0 (2—¢(0) — p(—0))dl <

N ™
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Then by the (DOM) theorem (Theorem 32), Ing such that Vn = ny,

s
5 [ (2 6u(6) ~ 6u(~6))d8 < =
0
Then, first using Fubini theorem,

é .
_ 0X,, sin(6X,,) 1
£ 2 6 1IE lfé(l —e 0X )d0‘| - 2E |:1 - 6Xﬂ:| 2 2]E |:]].|Xn|>251 <1 - W)]

> E[1x, 2251 =P (| Xn| >207").

Since, the choice of ¢ is not depending on n, we have shown that the sequence (X,,)n>n, is tight. But one can trivially
add any finite sequence of random variables to a tight sequence and the resulting sequence keeps being tight.

For the general case, one has to replace the real valued quantity ¢, (0) + ¢,(—0) by a new one. For k = 2, f(61,02) =
On(61,02) + &n(01,—02) = E [eielX”JQcos(Gan,g)]. One has to define the real valued g(0;,6) = f(01,02) + f(—61,65
to replace the previous quantity. The arguments remain the same and are easily generalizable to any dimension. O

A obvious use of the previous theorem allows us to derive a usefull corollary.
Corollary 1 (Cramer-Wold device). Let (X,,), be a sequence of random variables in R¥. Then

X, 9% X e vteRr, X, DTy

Proof. Exercice [ref section exercices] O
Example 2. Let Z be a random vector of law Ni(u,%), [DEFINE THE DISTRIBUTION] then
¢Z(€) _ ewTu—%eTzel

To see this, one can use the Cramer-Wold device and compute the characteristic function of t*Z for any t € R¥. The
random variable t Z is normal by definition and E [tTZ] =tTp,

Var(t"2) =E[(t"Z —t"p)?| =E[(t"Z —t"p)(t"Z —t" )" | =t"E[(Z — p)(Z — )" |t = t" St

Now using the result of Example 1, we have

0TY0 x 12
2

62(0) = dor o (1) = exp (z‘w%) ‘-

4.4 Law of Large Numbers and Central Limit Theorem

4.4.1 The Central Limit Theorem

We use Theorem 4 to prove the classical weak version of the Law of Large Numbers (LLN) and the Central Limit Theorem
(CLT).

Theorem 5 (CLT). Let Xi,...,X, be i.i.d random variables (en R) with E[X1] = 0 and E[X}?] = 0%, Let X,, =
n~' > X;. Then, the sequence \/n X,, converges in distribution towards N(0,c?).

Proof. We use Levy’s theorem. Let ¢ = ¢x,. The existence of the two first derivative are given by Proposition 6 and
¢'(0) =4E[X;] = 0 as well as ¢”(0) = i’E [X}| = —0?. By independence, we see that

] o ¢ 1252 1 n 1252
ityn X | _ an _ _ il — s e 2
sl = ()= (-5 o (3)) ™

—t202/2

Since the function ¢t — e is continuous in 0 and is the characteristic function of N'(0,02), we have the conclusion. [

One can directly use the Cramer-Wold device to get the mutlidimensional version of the (CLT).

Theorem 6. Let X1,...,X, be i.i.d. random vectors in R*, with p = E[X1] and & = E[(X; — p)(X1 — p)T], we get
that

1 n
7 2K =) £ AL, 2)
=1

Proof. Use Cramer-Wold device with the fact that V¢ € R, the familly of Y; = (t7 X; — tTp1); satisfies Theorem 5. O
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4.4.2 The Law of Large Numbers

We show the weak version of law of large numbers. The naming weak comes from the fact that the convergence occurs in
probability eventhough it is known to be true in the a.s. convergence under the same set of hypothesis. Nevertheless, a
few more tools are needed for that purpose.

Proposition 10 (LLN). Let Xi,...,X,, be i.i.d random variables of characteristic function ¢. Assume that ¢'(0) = i
for a peR, then Xn — u.

Proof. Expanding ¢, we get ¢(t) = 1+ t¢’(0) + o(t) when ¢ — 0. Then

E[e"™] =" <t) - (1 TR/ (1>) s it
n n n n—+0

which is the characteristic function of a constant (equal to ) random variable. Since the limit is constant, the convergence
in distribution transfers to a convergence in probability (by Theorem 2). O

Exercice 14. Show the mutlidimensional version of Proposition 10.

4.5 Rare events theorem

Theorem 7 (Rare events). Let (X, j)1<j<m, be a family of independent Bernoulli random variables of parameter p,, ;.
Assume that

(i) M, is increasing and tends towards +o0.

(ii) Z] | Dn.j _)—>+OO)\>O.

(i) maxi<j<m, Pn,j nors O

Then, if Sy, = X1 + -+ + Xy M, we have Sy, ), P(N) (the Poisson distribution of parameter \).

Proof. By independence of the random variables X, ;, we have that

M, M, ) M,
=[] ¢x.,®) = [ [@nje" +1=pnj) = [ [+ pnj(e" = 1)).
j=1 j=1 j=1

Let log be the principal determination of the complex logarithm (on C\(—o0,0]). Then, using Taylor’s formula for the
function t — log(1 + tz), we have that for any z such that |z] < 1,

1
1
—_ —_ 2 j— —_—
log(1+2) ==z ZJ;)(l u)(1+uz)2du'

Now take z = e — 1. By (iii), for n large enough, one has that maxi<j<u, pnj < 1/2. So

1 My, 1
1 1
2 2
1 - . N9 < n,j 1 - T IAaND I )
’ L( T a7 ™ (m% ”) JZJ ’ L< RIOPRA =,

then log ¢g, (t) is well defined and

My,
(it . it
j;log(l + pn,j(e 1)) St e 1).

This implies that ¢g, (t) — M=) which is the characteristic function of P(A) and we conclude by using Levy’s
theorem. 0



Chapter 5

Lindeberg-Feller theorem

The theorem of Lindeberg and Feller deals with the non-i.i.d. case in the Central Limit Theorem. It can also be used
when the distribution of each variable depends on n, the number of observations.

Theorem 8 (Lindeberg-Feller). Let (k). be a sequence of integers. For every n € N, we assume to have access to
(Xni1y- ey Xnk,) a collection of independent random vectors (i.e. Vi, X,,; € R?). Assume that

kn
1. R, = Z E [||Xn;iH2]1HXn,q,H>E] — 0, Ve > 0.

i=1 n—-+ao
kn
2. 1';1 Cov(Xni) —2 %

kn (d)
Then >, X,; —E[X,,] — N(0,%).

i=1 n—+ao0

Proof. We divide the proof in four steps.

Step 1: Reduction to the real case Without any restriction of generality, we can assume (by a centering) E [X,, ;] = 0.
By the result of Cramer-Wold 1, it is sufficient to show that for all ¢ € R,

kn
(7)) Xni <% N (0,4750).

Let fix t € R%. It is easy to see that the hypothesis of the theorem imply the same hypothesis for the random variables
tT X, ;. Indeed,

E[(t" Xni)*Lir x, ;1> ] < E [[t]*]Xn, wil>e]
— 1P [ 1Xn il L, 5y | — 0

and

=

Fon Fon
Z [ X)) = D B[t X, X it] = 7 () Cov(X, )t — 75t
i=1 i=1

i=1

Then, it is enough to show the theorem for real valued random variables only. For the rest of the proof, we assume that
Vi, Xn,i e R.

Step 2: Variance control We denote by 02, = E [X?”] and 02 = Zk" then, by assumption, o2

i=1 n i converges to a

finite quantity that we denote o Furthermore

swp op= sup (E[XD A je] B [X A, )

i=1,..., n i=1,..., kn
kn
< 62 + Z E I:X727/,7;]]'|Xn,i‘>5:| = 52 + R,.
i=1
Fix g > 0 and € = y/e0/2. There exists Ny such that ¥n > Ny, R, < €9/2. Hence, sup,_; . 0'72“- tends to 0. By
assumption, o, has a non-zero limit which implies that, V§ > 0,3Ing, Vn = ng,Vie {1,...  k,}
o i| < b0 (5.1)

29
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Step 3: An equivalence Let S, = Zf;l Xy,i. We have to show that

b, (t) — 207" (5.2)

n—+00

We begin with showing that (5.2) is equivalent to

n—+0o0

k

o 1

Y ox, (=1 — ot (5.3)
=1

For that purpose, we use the following lemma which is proved in Section 15.1.

Lemma 5. Let ay,...,a, and by,..., b, be complex numbers such that Vi, |a;| <1 and |b;| < 1. Then
n
|a1a2...an 7b1b2bn‘ < Z |(1i 7b1|
i=1

Using the previous lemma with the complex numbers a; = e®*ni =1 and b; = ¢x, ,(t), of modulus bounded by 1, we
have

Zz 1(¢Xn AL d)Sn ‘ < Z |€¢X" (-1 ¢an(t)|
kn

where we used that for any 2z € C such that R(2) <0, it holds that |e* — 1 — z| < |2|?/2. See Lemma 30 for a proof of this
fact. Using the Taylor-Young formula,

9, (8) 1P (5.4)

2

t
t
.0 0) = 11 = I, (0 = 1= ek, O = |[ (2 =05, ()] < G
0

where we used |¢% ()| <E [xX2.]= o7 ;- Then, plugging it in (5.4) and using (5.1), we finally show

n,:

ko 1 t4 kn t4
250 O g ()] < =3 ok < To26
83 7 8
This shows that the left hand side quantity tends to O when n goes to infinity. Finally, by triangular inequality, we have
showed (5.2) < (5.3).

Finish It remains to show (5.3). By the mean value theorem, there exists ¢; € [0,¢] such that

kn 2 kn
t
21 0x,. () =1+ on = 3 ox, (D) = (6x,,.(0) + ey, (0 )+ ¢xm( )
i=1 i=1
kn 12
1 1
= ) S, () — 9, (0)
1=1
o 2 2 (iceX
— 7E _X 3 1Ct nz_l
Z 2 [ n,z(e )]
1=1
42 kn kn
S5 E[X] e —11x, j<c] + 8 ) E[X2 1ix, 5]
=1 i=
t2 kn t3
< 5 CtEO'?L’i + t2Rn < 50'7216 + t2Rn

s
Il
—

Since this is true for every € > 0 and that 02 — 02 and R,, — 0, we showed (5.3). By the use of Levy’s theorem 4, on
limiting characteristic function ¢ — e='*/29% of a centered normal with variance o2 (continuous at 0), we have finished the
proof. O

5.0.1 Application to regression problems



Chapter 6

Dependent limit theorems

In this chapter we deal with the case of random variables that may be possibly weakly dependent. We assume that the
random variables (X;); are centered (i.e. E[X;] = 0). If one wants to avoid assuming that condition, it will ba at the cost
of assuming that

%ZE[Xi] — !

n—+0o0

for a £ e R.

6.1 Weakly dependent laws of large numbers

6.1.1 Weak law of large numbers under dependence
Proposition 11. Let Xi,..., X, be real random variables such that Vi, E[X;] = 0. Assume that
e > Var(X;) = o(n?)

o There exists ¢ : N — Ry such that Vi, j, |Cov(X;, X;)| < &(|i — j|) and

Then

1 n 2 n—1 n
Var (S,,) = 2 Z Var (X;) + 2 Z Cov (X;, X;)
i=1 i=1 j=i+1
1 n 2 n—1n—1i
i=1 i=1 k=1
1 n 2 n—1
= — > Var(X;) + = > (n = k)o(k)
i=1 k=1
1 & 2
< > Var (X;) + - > (k) =o(1)
i=1 k=1

O
Of course, one could replace the second condition of Proposition 11 by the stronger Cov (X;, X;) — 0 when |i — j| — c0.
The first condition is trivially satisfied when the X;’s are identically distributed or when one can find ¢ > 0 such that Vs,

Var (X;) < c.

31
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6.1.2 Strong law of large numbers under dependence

One option to prove strong dependent law of large numbers is Lemma 47, at the cost of assuming a uniform bound by at
integrable variable X.

Corollary 2. Assume the hypothesis of Proposition 11 and ¥i, |X;| < X such that E[X] < o0, we obtain that
Sy £50.

It is also possible to prove a version of it using martingales techniques. The centering has to be handled carefully since,
in general, the sum of dependent random variables does not satisfy the martingale axioms. We use the notation JF; for
the filtration corresponding to o(Xjy, ..., X;).

Proposition 12. Let X4,..., X, be real random variables such that Vi, E[X;] = 0. Assume that there exists r = 0 such
that for all i, j such that |i — j| > r, X; and X; are independent. Assume that

e Foralli=1,...,nandj=1,...,r, E[Var(X;|Fi_;)] <o
o > .0l <.
Then Y, X; converges almost surely towards 0.

Note that the assumptions of Proposition 12 include the assumptions of Proposition 11 when one apply it for the random
variables n~ 1 X;.

Proof. The proof uses the fact that a martingale bounded in Lo is almost surely convergent. Let V; = X; — E[X;|F;—1]
so that M; = Zle Y; is a martingale.

n

E [M? Z [(M; — M;_+) =Z 2] = Y. E[Var (X;|Fii)] < ). o7

i=1 i=1

Then the martingale (M,), is bounded in Ly and its limit exists and the convergence is almost sure. Now define
Z; = E[X;|Fi—1] — E[X;|F;—2]. The sum (N,), of the random variables Z; is again a martingale bounded in Ls for the
same kind of calculations. Then, identically, N,, converges almost surely. Following this scheme, we can write >, X; as a
sum of r martingales of the form

t
D E[Xi|Fiey] = E[X|Fic ]
i=1
that all converge almost surely. Then, )}, X; converges almost surely to a random variable X. Since the assumptions of
Proposition 11 are fulfilled, the only possible limit is 0. O

Of course, one can imagine generalizations of the previous result when the resulting convergence for the martingales are
of type ‘bounded in L;’ only using first moments conditions. It is also possible to generalize Kolmogorov three series
theorem in the case of weak dependence. Finally, the weak dependence condition of Proposition 12 does not have to be of
uniform flavor and a bound depending on j is possible as long has one ask for the convergence of the series of variances.

6.2 Central Limit Theorems under dependence

In this section, we expose weak dependence central limit theorems using the ideas of Lindeberg-Feller theorem. This
section follows the work of [6].

6.2.1 Bernstein blocks

Assume given a sequence of random variables X1, ..., X,,, we decompose its sum into blocks of two different size. This is
the so-called Berstein block technique. Let (py)n and (g,). be two sequences such that

pn — 40, ¢ — +o, q=o(p), p=o(n).

n—+a0 n—+0o0

We split S,, = 31" ; X; into blocks of different size. The benefit from this technique is to be able to make use of gaps (of
size g,) between blocks as well as the fact that the blocks of size g, are too small to count in the final convergence.

k k+1

:Zgi+2yi:Zk+ZI/c+1a

i=1 i=1
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where for 1 < i <k,

ip+(i—1)q ip+iq
€i = Z X vi = Z X (6.1)
(i—=1)p+(i—1)g+1 ip+(i—1)g+1

and vgi1 = Do (r+q)+1X; where p, = p, g, = g and k = [n/(p + ¢)]- In the following result, we encode the good
assumptions to obtain that the part Z;_, does not influence the convergence.

Lemma 6. Let X1, ..., X, be real random variables. Let S, = Y. | X; and o2 = Var(S,,). Assume that for two sequences
verifying (6.1), we have that

1. EE|Z2,] — o0,
2. Crgn(t) = 2522 ‘Cov( ( Zl 1 sz> , (éej))’ — 0, forallteR and g,h € {cos,sin},
8. x M1 B[ 5e0,] — 0, foralle >0,

4 0'2 Zz E[eF] —

Then, Sy /oy converges in distribution towards N(0,1).

n—0o0

Proof. Since Sy /0y = Zy/0n + Z},1/0n, assumption 1. and Slutsky’s lemma show that the limit in distribution of S, /o),
is the same as the limit of Z/c,,. We follow the proof of Theorem 8 on the random variables ¢;. Assumptions 3. and 4.
give an equivalent of (5.1) for the sequence (e;); which is

n’

sup afm < do?
i

where an ; = Var (¢;). The challenging part is the one corresponding to Step 3 of Theorem 8 and more particularly the

first line of (5.4).

k
621 1(bey/on ( H ¢€L/0'n.

k
k
621‘:1((1)5.;/‘771 (t)*l) — ¢Zk/0n (t)‘ < Hd’gl/g’" ('ZSZk/Un( )

g,he{cos,sin}

k
< Z ‘edm/an (t)-1 _ Geijo, )| +4  max  Ch g n(t)
i=1

where we used the fact that e®® = cos(tx) + isin(tz) and a telescopic sum. The first term can be handled in the same
way as in Theorem 8 whereas the second term tends to 0 by asumption. Finally, the convergence of Zf;l(qzﬁsi Jo (t) — 1)

is completely similar and we get that Z,, /o, — 9, (0,1). O

[WRITE defl and the proof of Proposition 1 of Doukhan]
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Chapter 7

Concentration inequalities

In this chapter we derive an important class of results called concentration inequalities. They are a tool to control the
deviation of a function of a certain number of independent random variables around its expected value. A concentration

inequality is a result of the form
P(Z-E[Z]=t)<g(t)

where the function g is a function depending on the distribution of Z.

Var(Z)

Figure 7.1: The concentration inequality of Bienaymé-Tchebychev

When Z = Z,, := f,(X4,...,X,) is function of independent random variables X3, ..., X,,, one includes the dependence

in n in the deviation function so that
P(Z-E[Z] =t) < g(n,t). (7.1)

We expect to find a non-increasing function g with respect to its arguments n and ¢. The advantage of such results is
that they permit to express statistical or probabilistic results valid for a fixed value of the number n of variables in the
problem. It has to be expected that the concentration inequalities involve worse constants than in asymptotic theorems.
Indeed, if we assume that Z,, converges to a limit variable Y, since the concentration inequalities (7.1) are valid for every
n, and that the concentration of the asymptotic variable Y only verifies (7.1) in the limit sense, we logically get worse
bounds. This chapter is highly inspired by the excellent [2].

Figure 7.2: In solid line represents the distribution of a variable Z,. The dotted line is a concentration inequality (here
Bienaymé-Tchebychev). The dashed line represents the asymptotic distribution of the variable Z,,.

35
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7.1 Chernoff Inequality

7.1.1 Basic principals

Here we show Markov’s inequality and its direct consequences.

Proposition 13. Let X be a real random variable. We assume that X is non-negative, then

E[X
vt > 0, IP’(XZt)é%.
Proof. We write X = X1x>¢ + X1x<¢ > t1lx>¢, hence taking the expectation we get the result. O

Exercice 15. Show that a non-negative random variable X that can be written as Yg(X) where g is a non-increasing
function satisfy P (X >t) < w_

Exercice 16. Show that for any p' > p = 1, we have
E XL xps] < 77 E [|x)7]

A direct corollary of Markov inequality is the following so called Bienaymé-Tchebychev inequality.

Corollary 3. For any real random variable X, we have that for any positive t, P(| X —E[X]|>1) < W%ZEX)

Proof. Apply the Markov’s inequality for the non-negative random variable (X — E[X])2. O

The idea behind Bienaymé-Tchebychev inequality is somehow generic in the theory of concentration inequalities. The
upcoming transformation of the random variable X replaces the transformation X — (X —E[X])? of the precedent proof
the transform = — exp(Az) which depends on a parameter A that is optimized at some step in the proof. The function

Az 0 Uy(A) =1logE [exp(AZ)]
is called the Cramér-Chernoff transform of Z. The dual function V% is given by

U () = sup(At — Uz (X))
A=0

and is called Fenchel-Legendre transform. Following the path of the proof of Bienaymé-Tchebychev’s inequality, we
obtain (after optimization in ) the following corollary.

Corollary 4. For any real valued random variable Z, we have that
P(Z>=t) <exp(—T%(t))

for any t > 0.

Comments It is clear that Uz(0) = 0 which implies directly that ¥%(¢) > 0 as it is a suprema of a set containing 0.
When E [Z] exists, Jensen’s inequality implies that U z(¢) > AE [Z]. Hence, when ¢ < E[Z], we have that At — ¥ z(\) <0
and U%(¢) = 0. This result is then empty when ¢t < E[Z]. For that specific reason, we will usually center the random
variable Z (i.e. E[Z] = 0 is assumed at the cost of changing Z into Z —E[Z]). Furthermore, when E[Z] = 0, A < 0 and
t > 0, another use of Jensen’s inequality gives At — ¥z (\) < 0 and then

U5 (t) = S;elg(kt —Uz(N)

Proof. For any A > 0, using Markov’s inequality for the non-negative random variable e*# and by the monotonicity of the
exponential,
IP(Z > t) < e—)\t]E [e)\Z] _ 6—(/\15—\1/2()\)).

Now, using the fact that the probability on the left hand side is not depending on the parameter A > 0, we finally have
that

P(Z > t) < inf e~ M=¥2(0) = e V20,
A=0
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7.1.2 Examples

Gaussian random variables Let Z be a gaussian N/ (O7 02) random variable. Since E [e/\Z] = e/\2‘72/2, Uz (\) = \a?)2.
Then

A2 t?
)= 207

W% (t) = sup(At —
AeR 2

and as expected, one has P (Z > t) < e~+/20".

Poisson random variables Let Y be a Poisson P(v) random variable and define Z =Y — v. The moment generating
function is given by

© A\ k
E I:eAZ] _ e—)\l/e—z/ Z (6 kT) _ e—)\u—ueueA’
k=0 '

then Uz (\) = v(e* = A—1). Let f;(\) = Mt —v(ed =X —1), then f/(\) =t —v(e* — 1) and the maximum of f; is attained
at A = log(1 + t/v). This gives

V% (t) = vh(t/v) where h(z)=(1+z)log(l+x)—z.

: ~ * ~ ~ _ _ —tlog(t) :
Since h(x) et zlog(z), UE(t) it tlog(t/v) ~ tlog(t) and then P(Y —v > 1) tHOHD (e ). With extra
calculation, one can easily prove that
2
x
hz) 2 ———,
@)= 30D

which actually shows that the Poisson random variables have a sub-Gamma tail in the sense of Definition 5 below.

Sub-Gamma random variables See Proposition 15.

7.1.3 Sub-Gaussian and sub-Gamma random variables

Definition 5. We say that a random variable X is
e a sub-Gaussian random variable of constant v > 0 if VA€ R, Ux(\) < A\?v/2. We denote X € G(v).
e a sub-Gamma random variable to the right, of constant v > 0 and ¢ > 0 if

Ay

Px(A) < 2(1 — 2¢\)

forany 0 < A < 1/c.

We denote X € T' (v,c). If —X is sub-Gamma to the right, we say that X € T'_(v,c). We finally note I'(v,c) =
Iy(v,e) nT_(v,c).

For equivalent definitions/characterization of sub-Gaussian and sub-Gamma random variables, one can take a look at the
first chapter of [2]. Of course, the vocabulary is relevant as seen in the following example.

Example 3. A gaussian N (0702) random variable is sub-gaussian G(o?).

Definition 5 is only one of some possibilities for the definition of sub-Gaussian random variables. It is actually possible to
show that one can chazyacterize those random variables with its moments and also by the existence of a Orlicz norm for
the function ¢(x) = €® — 1 (see Definition 6).

Proposition 14. Let X be a real valued random variable with E[X] = 0 then the following are equivalent.
1. X is sub-Gaussian.
2. There exists v > 0 such that for all t >0, P(X >t) v P (=X >t) < e /2.
3. There exists C > 0, s.t. for any integer ¢ > 1, E [qu] < ¢!(C)1.
4. There exists ¢ > 0, s.t. E [eXz/Cz] < 2.

Exercice 17. Prove Proposition 1/.
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Example 4. A Gamma random variable Y of parameters (a,b) is sub-GammaT'(ab?,b). Indeed, E[Y] = ab and Var(Y) =
ab®. Let X =Y — ab then for any A\ < 1/b,

AX . Ay—ab) ¥* et —Xab -
E - y—ab)d _— g — abr1 a
[e ] L e )" dy =e (1 —Xb)

and VA < 1/b, Ux()\) = —Xab — alog(1l — A\b). But since, log(1 — u) — u < u?/(2(1 — u)), we have

A2ab?
S 00—

For A < 0, which correspond to computing the Legendre transform for —X, using —log(1 — u — u < u?/2), we get

272
Ux(A) < a)\2b

which gives that X_ € G(ab?) < T'y (ab?,0) = I'y (ab?,b). Then X € I'(ab?,b). It is interesting to see that the two tails of
a Gamma random variable are unbalanced. The right part is sub-Gamma whereas the left tail is actually sub-Gaussian.
In some cases, the behaviors of the tails on the left and on the right are different and one may study them separately.
The tail of the sub-Gamma concentration is slightly different from the concentration of sub-Gaussian random variables.
The precise statement is as follows.

Proposition 15. Let X € I'(v, ¢) then for all t > 0,
P(X>vavt+a)<e!  P(-X>Vavttet)<e

Proof. Since ¥y ()\) < 2(%1\)’

v > v <ct>
Uy(t) > su AN —m—— | = — —
x(®) AE(O,Il)/c) ( 2(1—cA) 29\

where g(u) =1+ u —+/1+ 2u for w = 0. Then

but since g~ (u) = u + v/2u, one has directly P (X > +/2vt + ct). The left tail is handled in the same way. O
The following result deals with the inverse of the Fenchel-Legendre transform.

Lemma 7. Let 1) be a convez function such that 1»(0) = ¢'(0) = 0 that we assume differentiable on [0,b) for 0 < b < +c0.
For any T = 0, we define,
P*(t) = sup (At —¥(N)).

Ae[0,b)

Then ¢* is positive, increasing and convez on (0, +00), is such that ¥*(0) = 0 and

. y+ 1Y)
|25

Proof. As a direct consequence of the assumptions, 1 is a non-decreasing function and then is non-negative on [0,b).
This triggers that ¢*(0) is a supremum of non-positive values where 0 is among them. This shows that ¢*(0) = 0. As
a supremum of convex and non-decreasing functions ¥* is convex and non-decreasing. Hence 1* is non-negative. Now
assume that there exists ¢t > 0, such that *(¢) = 0, then for any A € (0,b), ¥(\) = At. But, then ¢’(0) > ¢ > 0 which is
absurd. This shows directly that ¥* is also increasing. Let

P (y) =

u =

- [ww)]
A€(0,b) A

then for any ¢ > 0,

y+ ()

uzt < VYAe(0,b), 3

>t o YAe(0,b), y=M—v(\) < y=F).

This equivalence shows that v = *~!(y) in the generalized inverse framework but since the actual inverse of ¥* exists
(since it is a continuous increasing function on (0, b)) it coincide with the regular notion of inverse. O
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Proposition 16. Let Z1,...,Zn be real valued random variables such that for all X € (0,b),

where ¢ is convex differentiable and such that 1¥(0) = ¢'(0) = 0. Then

]E[ max Zi] < ¢*(log N).

=1

b EEEE)

Proof. For any A € (0,b),

exp (A]E L max ZD < :IIE [exp(AZ:)] < N exp(ih(N)),

yerey

which is equivalent to writing that AE [max;—1, . n Z;] — ¥()\) <log N or by optimization in A,

E[ max Zi] < inf [M]
i=1,...,N Ae(0,b) A

We end by using Lemma 7. O

Using Proposition 16, one can directly derive a bound for the expectation of the maximum of sub-Gamma random variables.

If Z, eT(v,c),
E [ max Zz} < 4/2vlog N + clog N.
% ey

=1,

7.1.4 Hoeffding inequality

We begin with the concentration of a single bounded random variable.

Lemma 8 (Hoeflding lemma). Let Y be a random wvariable with E[Y] = 0 and such that Y € [a,b] and let ¥y (N) =
log E [exp(A\Y)]. Then, ¥"(\) < % andY € G (%)

Proof. Since |Y —(a+b)/2| < (b—a)/2, Var (Y) = Var (Y — (a + b)/2) < (b—a)?/4. For any A > 0, we define a modification
Py of the distribution P of Y by dPy(z) = e~ Y¥Mer®dP(z). Then, since the support of Py is also [a,b], we have that,
for Zy ~ Py, Var (Zy) < (b — a?/2). But, immediate computations give

b— 2
(N = e~ Yy MR [YQeAY] _em2Ur (V) (E [Ye)\Y])Q ) [Zi] _ E[Z,\]2 = Var (Z) < ( 4a) _
By integration and the fact that ¥4 (A\) = E[Y] = 0 and also that ¥y (0) = 0, we get
b — 2 )\2 bh— 2
Ui (N < % and Ty (A) < %.
This concludes the proof. O

This inequality applies directly in the context of sums of Rademacher variables. Indeed, if S = "' | ;a; then

E[e*] < e’ Zimial, (7.2)
A natural application of the precedent result is the so called Hoeffding inequality given in the following theorem.

Theorem 9 (Hoeffding inequality). Let Xi,...,X, be independent random variables such that for any i, X; € [a;, b;].
Let S =>7"  X; —E[X;]. Then Se€ G} ,(bi —a;)?/4) and

2t?
i=1\"1 ?

Proof. Obviously,

E [eAS] < ﬁE [ek(Xi—E[Xi])] <

n S
A2 (b;—a;)? AZSR L (bi—ay)?
8 8
=1 =1

=€

€
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We only derived the result as an upper bound on the tail probability on the right tail but the symmetrical nature of the
hypothesis give the exact same bound for the left tail. There are two generalization of the previous result that benefit
from a different manner to control the Laplace transform of the random variables. The independence is obviously crucial
in the arguments of the proofs. The first result gives that the tail concentration is of the form of a Poisson tail whereas
the second ensures that the tail is sub-Gamma.

Proposition 17 (Benett inequality). Let b > 0 and ¢(u) = e* —u—1 forue R. Let Xy,...,X,, be independent random
variables such that Vi, X; <b. Definev =Y | E[X?| and S =Y | X; —E[X;]. Then

Us(M) < 756000,

Consequently, ¥Vt = 0 we have P (S > t) < exp(—(v/b?)h(tb/v)) where h(z) = (1 + x)log(1l + ) — x for any x > 0.

The attentive reader has noticed that the tail bound is exactly of the nature of a Poisson concentration as seen in Section
7.1.2.

Proof. We assume b = 1 at the price of changing the random variables X; in X;/b. Notice that the function u — ¢(u)/u?
is decreasing on R then, using that X; <1,

M X — 1< X2 -2 —1),

which induces E [e*] —E[X;] — 1 < E[X?] ¢()\). Then,

NgE

Us(A) = ), (Ux,(A) — AR [X;])

1

.
I

<

-

N
I
—_

log (1+ XE[X] + E [X?] 6(A) - AE[X]

NgE

<

E[X2]6() = v6()).

1

.
Il

A even stronger result is the following.

Proposition 18 (Bernstein inequality). Let X1,..., X, be independent random variables such that there exist ¢ > 0 and
v >0 such that 3 | E[X?] <v and

n q| B
Vg = 3, ;E [(X)1] < Ech 2

where x4 = max(x,0). Then, denoting S =Y., X; — E[X;], we have that for all X € (0,1/c) and t > 0,

vA? " v [ct

where g(u) = 1 +u — /1 + 2u for u > 0.

Then the concentration is sub-Gamma on the right. Obviously, one has to keep in mind that this result as the previous
one is not symmetric and then only holds for the right tail of the distribution of the sum. If one wants to get symmetric
concentration, the conditions have to be assumed on both sides of the distributions of the Xj.

Proof. We use another time the notation ¢(u) = e* —u — 1. For u < 0, ¢(u) < u?/2. Then, for A > 0,

AMX)2 N O AX)TAX)? N & A(x)L

2 = q! 2 = q!

P(AXi) < ¢(MXi)-)lx,<0 + ¢(A(Xi)4+)1x,>0 <
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from which we deduce >} E[¢(AX;)] < § X5/2, A%?~2. Finally,

I

=
=
S
>
s

i=1
A2 & vA?
< — Ac)t =
2 Z( )= e
q=0
The rest of the proof is very identical to the proof of Proposition 15. O

7.2 Tensor inequalities and Entropies

The case of sums of independent variables is of course an important case but it does not witnesses the full diversity of
the functional of independent variables that one encounters in statistical of probabilistic problems. In this section, we are
interested in giving tools that allow to mimic the simple case of sums of independent variables through techniques that
we call tensorisation. A tensorization equality of inequality is a result that links the multidimensional case to the one
dimensional case. Doing that, one hopes to deduce the concentration of a functional of n independent random variables
from the dependency of the functional to each of the variables taken separately. We begin with the simplest tensorization
inequality, the so-called Efron-Stein inequality.

7.2.1 Efron-Stein inequality

For a sum of independent random variables Z = X1 + - - - + X, basic calculations give Var (() Z) = Y, Var (() X;). In fact,
the only needed fact is that the random variables X; are uncorrelated. The Efron-Stein inequality deals with the case of
a generic function of n independent random variables.

Theorem 10 (Efron-Stein). Let X1,...,X,, be independent random variables and let Z = f(X4,...,X,) for a real valued
function f. Assume that E[Z] < o0, then

Var(Z) < Z E [Var(i)(Z)]
i=1
where Var')(2) = EO [(Z —ED[Z])?] and EO[] = E[|X1,. .., Xim1, Xit1, - Xn].
Proof. The idea of the proof is to create a martingale (4;); such that Z writes as a sum of the terms A;. We denote by
E; [-] the expectation operator conditioned to the variables Xi,...,X;. By convention, we take Eg[-] = E[-]. Then, we

define
A; =E;[Z] -E;—1 (7],

so that we have that

The next step is to show that the random variables A; are uncorrelated so that the variance of Z will equals the sum of
the variances of the A;. First of all, Vi,j € {1,...,n} with j > ¢, E; [A;] = E; [E; [Z]] - E; [E;_1 [Z]] = E; [Z] -E; [Z] = 0
and then,

E[AA;] =E[E; [AA]] = E[AE; [A,]] = 0.

But using Fubini’s theorem to obtain that the integration over X;,..., X, can be done over X; first and then over
Xiv1,...,X, afterwards, we have that E; [E(i)[Z]] =E;_1[Z]. Then,

. . 2
A; = E; [Z —E® [Z]] and by Jensen’s inequality, A2 <E; [(Z —E® [Z]) ] .

SoE[A?] <E|(2-ED[2]))’| =E[E® (2 ~E©[2])*]] = E [var®(2)] which gives the result. 0
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7.2.2 General entropy tensorization

Efron-Stein inequality is actually a special case of a more general fact about a class of functions that define a notion of
entropy. The entropies that we define in this section are to be related to Shannon entropy and the related topics. We
begin with the result before giving the proper definition of the entropy.

Theorem 11 (Tensorization bound for entropies). Let ¢ : [0, +0) — R be a continuous and convez function on [0, +0).
We assume that ¢ is twice differentiable on (0, +00) and ¢" > 0 and 1/¢" is concave. Then, the random variable Hy(Z) =

E[¢(2)] — ¢(E[Z]) satisfy
Hy(Z) <E lE Hd(f)(Z)l

i=1
where H{(2) = E?[p(2)] — p(ED[Z]).
Proof. We omit the proof that can be found in [2, Theorem 14.1]. O

The operator Hy is called the ¢-entropy operator. For the specific choice of ¢ = xlogx, we denote Ent = Hy. This last
quantity is called the classical entropy. It is clear that the function z — xlogx verifies the conditions of the theorem.
It is interesting to note that the choice 2 — 22 is also valid and H,, ,,» = Var is no more than the variance operator. It
is an extremal case in a sense since taking ¢ = 2*(log z)” imposes that 1 < o < 2.

Exercice 18. Show that ¢ : x — xlogx fulfills the conditions of Theorem 11.

7.2.3 Chain rule for various notions of entropy

-Sub-addtitivity of entropy

Theorem 12 (Sub-additivity).

7.2.4 Bounded difference inequalities

7.3 Orlicz norms

In this section, we introduce the notion of Orlicz norm and show its consequences in terms of concentration.

Definition 6. Let 1) : R, — R, be a conver function such that 1)(0) = 0. The Orlicz norm of a variable X in RF is

given by
Xy = inf{c> 0:E [1/} <X>] < 1}.
c

If the set on the right hand side is empty, we write | X |4 = 00.

Simple facts over convex functions show that ¥ > 0, is continuous and non-decreasing on R, . This fact show that the
functional ¢ — E[¢ (| X|/c)] is a continuous non-increasing function so that we can say that the inf in the definition is
actually a min. This shows that for ¢ = | X||,, we have that E[¢ (| X|/c)] = 1. The Orlicz norm is not abusively called a
norm since we have the following.

Proposition 19. The operator | - || is a norm over the set of random variables quotiented by the relation R given by
X 5 Y if and only if X =Y almost surely.

Proof. Let X and Y be two random vectors with finite Orlicz norms. Let ¢; > | X |y and ¢ > [[Y .
(e (2 )
c1 +c2 c1 €1+ Co Co €1+ C2

! 11 & 1Y
< c1 +CQE [1)[} (Cl)] * C1 +C2E [w <c2>]

C1 C2

c1 + Co Cc1 + o

Since this is true for any ¢; > |X|, and co > |Y|y, this shows that [ X + Y|, < | X[y + [Y]y. From the same kind of
calculations, one can show that [AX|¢) = |A||X|l4. Now assume that | X |, = 0 and assume that X = 0 a.s. is false. Then
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one can find § > 0 such that p = P(|X| =) > 0. Since |X|, = 0, we have that for any ¢ > 0 that E [¢(| X|/c)] < 1.

Then
E [¢ (”Xc”)] = LOO]P (|X] = ey (1)) dt < 1.

But since ¢! is non-decreasing, when one takes cyy~!(t) < 4, we see that P (| X|| = cy=*(t)) = p which implies that the
above integral is infinite, absurd. Then X = 0 a.s. and so X ~ 0 which concludes the proof. O

Orlicz norms 1, The important examples are the power functions and the exponential type functions. If ¥ (z) = 2P,
then | X |y = [X|,. When ¢(z) = e*" — 1, for any ¢ > | Xy, we have that

x2

E [e?] <2 (7.3)

and then by Proposition 14, the random variable X /c is sub-Gaussian. The value | X||, is then the smallest ¢ such that
(7.3) holds. Finally, we denote by 1,(z) = " — 1 and by | - |, the corresponding Orlicz norm. It is immediate to see
that for any random variable X,

[ X1y < Xy, (7.4)

since we have the inequalities ¢, (z) = 2P for any p > 1.
Where the Orlicz norms for ¢(z) = zP control the existence of moments of order p, the Orlicz norms ¢, control the
exponential concentration of the random variables. The precise statement is as follows.

Proposition 20. Let X be a random variable and let p € [1,+0). The following facts are equivalents
1 | Xy, < oo.

2. There exist C, K > 0 such that
P(|X|>t) < Ke “”  vt>o0.

If 1. occurs then 2. is verified with C = HXH;: and K = 2. If 2. occurs then | X |y, < ((1+ K)/C)'/P.

P(X]|>t) <P (wp (||X)|(|L> > ¥ (th))

tp
<2 —— |,
P,

where we used that Vu > 0, it holds that 1 A (e* — 1)7! < 2e~“. Now it 2. holds,

Ix1® P
oo e [ ]
0 C

+o0 s/cP

- J P (||X|| > 51/1’) © ds

0 cP

+0 s/cP
Ke_cse—ds

0 cP

K1

S C—1)cr

Proof. Assume that 1. holds. Then

N

Then, when ¢ > ((1 4+ K)/C)'/?,
K _ K -
C—-1" (1+K)/C)C—1

1

)

and so | Xy, < c which gives the result. O
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Proposition 21. Let ¢ : Ry — Ry be a convez function such that 1¥(0) = 0 and there exists ¢ > 0 such that
lim sup Y(@)y(y)
vy Y(czy)

Then, for X,,..., XN real random variables, it holds that

. < -1 .
| max | X;lly < Ky~ (N) max [ Xify.

1<i<N
where K = K (1) is a constant only depending on 1.

Proof. We first assume that (1) < 1/2 and that for all z,y > 1, ¥(2)¢¥(y) < ¥(czy). In particular for any z > y > 1,
Y(x/y) < Y(ex)/Y(y). Now, let y = 1 and u > 0 so it holds that

s (1) 2 e[Sy (VY ]

I<isN -\ uy ¥(y)

o 1) (c| X /u)
<i=21 o) +1(1).

So taking, u = cmaxi<ij<n | Xi|y and y = ¢p~1(2N), one obtains

maxi<;<nN |Xz|)] N 1
E SAISISN I e S o<1
[‘”( w O

This shows that || maxi<i<n [Xi||y < ™1 (2N) maxi<i<n | X[y, but since ¢ is convex, the generalized inverse ¢~ is
concave and 1 ~1(0) = 0, then ¥ ~}(2N) < 2¢)~}(N) and we get the result in this special case with K = 2c. Going back
to the general case, under the conditions of the theorem on v, one can always find 0 < ¢ < 1 and 7 > 0 such that

p(x) = op(T),

N | =

Vo,y =1, ¢(x)o(y) < plery)  and  ¢(1) <

Then the same concavity fact gives that Yu > 0, ¢~ 1(u) < ~!(u)/oT which is equivalent to saying that Yu > 0,
Y(uoT) < ¢(u). Then for any ¢ > | X |4, we have that

oo (25)] <o (2)]

which imply that | Xy < |X|g/o7. But, for all v > 0,

el (%)) =l ()] == (5]

which shows that | X|4/7 < |X|y. Using these two inequalities, we have that

1 2c 4 2cr 4
| max, 1Xll, < 21 masg 1XGll, < 207 (V) max 1Xills < 297 (V) max [ Xy
Then Proposition 21 holds with K = % which depends only on . O

Exercice 19. Show that for any convex function v satisfying the hypothesis of Proposition 21, one can find ¢,0 and T
such that ¢(z) = o(Tx),

Vry> 1 6@)o(y) < dlewy)  and  o(1) < L.

Exercice 20. Show that v, satisfy the hypothesis of Proposition 21 withc=1, 7 =1y o =1/(2(e —1)). Deduce that in
that case, Proposition 21 holds with K = 8(e — 1)? < 24.

The sub-Gaussian case (12) When one choose 1 = 1) and if the random variables Xi,..., Xy are sub-Gaussian
G(v), the result gives is that
' < Mo < i
| max [Xilly, < K+/log(N +1) max [ Xify, < Kv/2vlog(N +1)
The bound on the right hand side is exactly of the same form as the result of Proposition 16. As a consequence, when the
random variables X; are sub-Gaussian, both the expected value of the maximum and the Orlicz norm are controled by a
bound propostional to 4/vlog N. By a trivial manipulations, one finally have that there exist positive constants K and C'

t2
P < max | X;| > t> < Ke Cvtosw (7.5)

1<is<N



7.3. ORLICZ NORMS 45

Sub-optimality As good as (7.5) seems, the bound is actually not optimal. The Orlicz norm does not takes into account
the possible bias that the maximum introduces. Indeed, if X;,..., X are sub-Gaussian random variables of constant v,
one can show that

P ( max | X;| > t> < 2Ne §r = 9~ frtlos(N) (7.6)

1<i<N

The term log(N) is actually more a bias term in this last inequality than a multiplicative term as in (7.5). The bound
(7.5) is the best bound that one can obtain with no bias term inside the exponential. In the sequel we will use (7.5)
or (7.6) depending on the purpose one is willing to achieve. It is however wrong to think that the bias and the tail of
the maximum are of the same order in the case of Gaussian random variables. Indeed the tail behavior is actually not
depending on the number N in the maximum and is only dependent on the supremum of the variances.

Proposition 22. Let X = (X1,...,Xx) be centered Gaussian vector with 0®> > maxE [Xf], then for any t > 0 we have

2
u
P . > < -
P <| 12‘1}5\7}(’ E [1211'1)5\7)(1] > t) S Zexp ( 202>

Proof. Let T be the covariance matrix of the Gaussian vector X = (X1,...,Xn) and let Y = (Y7,...,Yy) be a Gaussian
vector of i.i.d. standard Gaussian variables. Since I' is a positive semidefinite matrix, one can define its square root matrix
VT. By construction, the vector X and the vector v/T'Y have the same distribution. Let fiY) = maxizl,__.7N(ﬁY)i. It

remains to prove the concentration bound on the function f. But for any two vectors u,v € RN, and i € {1,..., N} we
have
N N 1/2
1/2
[(VTw); = (VTw)i] = | 3 (VD) = v5)] < (Z(@%,j) e = vll2 = D37 fu = vz = v/Var () fu = v,
j=1 j=1
but then

f(u) = f(v)] < max |(VTu); = (VT0)i| < ou—v]s.

1<i<N

Therefore, the function f is Lipschitz of constant ¢ and Theorem 16 applies. O

7.3.1 Gaussian concentration inequality

This section shows one important result over Lipschitz functions of independent Gaussian variables. The main theorem
rely on the approximation of a Gaussian random variable by a sum of Rademacher random variables. This approximation
will allow us to prove a logarithmic Sobolev inequality inherited from the specific behavior of functions on the binary
hypercube. This subject is vast and has given a lot of interesting consequences for concentration and isoperimetric
problems. The set {—1,1}" is called the binary hypercube of dimension n. A Rademacher random variable is a
random variable X on {—1,1} such that P(X = —1) =P (X = 1) = 1/2. For a function f on the hypercube, the discrete
derivative in the i-th coordinate is given by

f(@) — J@)

Vif(z) = 9

where Z) = (z1,...,2;_1,—x;, 41, ..., o,) and the discrete gradient is the vector Vf(z) = (V1 f(x),..., Vaf(z)). A
logarithmic Sobolev inequality is a result that bounds the entropy of a random vector with its variance. More precisely,
we have the following theorem.

Theorem 13 (Logarithmic Sobolev on the hypercube). Let f: {—=1,1}" — R and let X € {—1,1}" be a vector of i.i.d.
Rademacher random variables. Then,
Ent(f*(X)) < 2E[|Vf(X)[?].

Note that if one applies the Efron-Stein inequality in this context, one obtains Var (f(X)) < E[|[Vf(X)|?]. But if f is a
non-negative function, Var (f(X)) < Ent(f?(X)) which shows that Theorem 13 is stronger than Theorem 10.

Exercice 21. Let ¢,(Z) = (E[Z?] — (E[2?])*?)/(1/p—1/2) for p € [1,2). Show that for a non-negative random variable
Z, the function p — ¢,(Z) is non-decreasing. Calculate ¢1(Z) and lim, 2 ¢,(Z) and deduce that Var(Z) < Ent(Z?).

Proof of Theorem 13. Theorem 12 for the random variable f2(X) gives

Ent(f?(X)) <E li Ent(i)(f2(X))1

i=1
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where Ent® holds for the entropy with respect to the measure conditioned on X0 = (X1, ., X1, Xi41,- ., X)) In
the following, we show that _ _
Ent® (£2(X)) < 2ED[(V,£(X))?]

which is a one dimensional problem. Then it is enough to show that for a function f: {-1,1} - R,

1

Ent(f*(X)) < 3E[(F(1) = F(=1)*].

Then denoting a = f(1) and b = f(—1), the last inequality rewrites

2 b2
% log(a?) + 5 log(b?) —

a® + b? a® + b? (a—b)?
< .
2 k’g( 2 ) ST

We are now reduced to prove an elementary inequality for all a,b € R. First of all, we can assume that 0 < b < a by
symmetry and since (|a| — |b])? < (a —b)%. Now fix b > 0 and let

2

T 9 b2 9
h(z) = 5 log(z*) + Elog(b ) —

z? + b2 o (x2+b2> _ (z—0)?
2 B\ 2

0 and A”(z) < 0. The function h is then concave with derivative 0 in b, then h is

from which we see that h'(b) =
[b, +00) which proves the inequality. O

non-positive on the interval

Lemma 9. Assume that for a random variable Z, there exists a constant v > 0 such that we have Y\ > 0,

2
Ent(e*?) < %E [e*]

then Z is sub-Gaussian G(v) and so, for example, P(|Z —E[Z]| > t) < 2¢~*/%_ for all t > 0.
Proof. Let F(X) = E[e*?] then F'(\) = E [Ze*#]. The condition of the theorem rewrites

v

AF'(X) = F(\)log F(A) < Z=F(3)

(=5) <3

or again

By elementary integration on the interval (0, A],

!
log F(\)  F'(0) _ log FI(\) _E[Z] < 12
X\ F(0) )\ 2
which finally gives logE [eMZ~EIZD] < A?1/2 and then Z — E[Z] is sub-Gaussian of constant v. O

A direct consequence of the previous result is the following concentration inequality.

Theorem 14. Let X = (X1,...,X,,) be i.i.d. random variables of Rademacher and let f : {—1,1} —> R be a real valued
function such that there exists a constant o > 0 such that |V f(z)| < o for all x € {—1,1}". Then f(X) is a sub-Gaussian
random variable of constant 202 so that for all t > 0,

B(f(X) - E[f(X)]| > 1) < 2 5=

Proof. Theorem 13 with the function g = e*/? gives Ent(e’\f(X)) < 2E [(Ve/\f(x)/2)2]. But since for any a,b € R such
that a > b,

(ea _eb) < (a;b)ea7
we have that
A2 A2
E[(Vie 022 = 2B | (VieV )3 | < TE|(Vif (X)3eM ) | < SE|(Vif ()2 D) |

which implies that Ent(e* (X)) < A262E [e*/(X)]. We finish by using Lemma 9 for v = 202. O
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Theorem 13 can be used to prove the same kind of result for vectors of independent Gaussian random variables. This is
the subject of the next theorem.

Theorem 15. Let X be a centered Gaussian vector in R™ of covariance matriz I, and let f : R™ — R be a function of
C1(R™). Then
Ent(f2(X)) < 2E[|VF(X)|?].

Proof. By the sub-additivity of entropy of Theorem 12, it is enough to prove the theorem in dimension 1 and show that
Ent™ (f2(X)) < 2E@ [0, f(X)?].

So, let f : R — R continuously differentiable. The idea is to use that if X ~ A(0,1) then for a sequence (g;); of
Rademacher random variables,

1 < @
X, = — Z gi -5 X
Vg
So by the continuous transformation property (of Theorem 1) we have that

Ent (f? (X)) — Ent(f2(X)).

n— 4+
But
Ent (f?(X,)) < 2E =9E | = L IR [f(X)2
(P ) <22 | 5 =% RN o, B[]
since f is C1(R). O

The main consequence of Theorem 15 is a concentration theorem for Lipschitz functions of independent random variables.

Theorem 16 (Tsirelson-Ibragimov-Sudakov). Let (X1, ..., X,) be independent Gaussian random variables. Let f : R™ —
R be a Lipschitz function of constant L. Then the random variable Z = f(X1,...,X,) is sub-Gaussian of constant L?
that is VA e R,

E [QMH[Z])] < XE.
In particular, for any t > 0,
P(Z-E[Z] >t) <e 227,

Proof. We first assume that f is continuously differentiable and |V f| < L. We can assume without loss of generality
that Z is centered E[Z] = 0. We apply Theorem 15 with the function e*//2, then

A

2 A2L2
Ent(e") < 2E[|VeM2)?] = ZE[M|V/]?] < S5~

E[e”].

Finally using Lemma 9 we get the result. O
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Chapter 8

Convergence of empirical processes

8.1 Introduction
The simple convergences given by LLN and CLT,
X, “SE[X] or a(X,—E[X]) D N (0,02)

gives that for any fixed function f in a set of functions F,

(X)) —E[F(X)]) "% N (0,02).

=

1
i=1 \/ﬁz

Many statistical contexts need to deal with the case when the function f is actually random and possibly dependent on the
values ofA the random variables X, ..., X;,. This case comes naturally when one needs a control of the empirical quantity
L3 f(X;) for an estimator f drawn on the sample.

1

Measurability of the sup In the sequel, we will be interested in the behavior (in a large sense) of processes of the form
sup e f(X). Assume that one wants to give a precise meaning to E [sup ;. f(X)]. The attentive reader noticed that
this may pose a measurability problem. Indeed, in general, it is not possible to prove that sup .z f (X) is measurable.
Nevertheless, there are, at least, two strategies to overcome this issue. First, one can define

E* [sup f(X)] = sup {JE lsup f(X)} : with G ﬁnite} . (8.1)

fer feg

Hence, one can always assume the suprema taken over finite sets (which define measurable objects). Secondly, one can
define an improper notion of espectation E* using the outer measure/outer integrals concept. For more information on
that subject, one can relate the following notion with (17.2). For a map Z :  — R, we define

E*[Z] = inf{E [U] : with U > Z and U : Q — [—o0, +o0] is measurable}. (8.2)

Then one can define E* [sup .z f(X)] in this manner. Of course, if the set F is finite the two definition coincide with the
regular notion of expectation on sup . f(X) that is now clearly measurable. We do not specify which of these notions are
of interest for us since, the conditions that we assume in the forthcoming theorems impose continuity a.s. of the process
and separability of F. These two conditions are sufficient to have that the supremum is actually measurable. In particular,
it reduces to the study of a continuous random process defined on a Polish space (even though the completeness is not
present).

8.2 Examples of empirical processes

8.2.1 Education vs Employment

In our model a population of individuals Xy = (Y1, 21),..., X, = (Y, Z,) is such that Y; € {0, 1} represents the fact for
individual ¢ to be employed (value 1) and Z; € R represents the level of education. We are interested in understanding
the relation of dependence between education and employment summarized in the following function,

Fo(z) =P =1|Z = z).

49
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A natural hypothesis to impose on the function Fj is to be non-decreasing in z as (normally) a higher level of education
gives more access to employment. Let

Ay ={F:R — [0,1], F is non decreasing}

a set of functions that satisfy the same conditions than Fy. A natural estimator for Fj is the maximum likelihood estimator
defined as

F, = argmax ¢, {Z (Yilog F(Z;) + (1 — Y;)log(1 — F(Zi)))}

Denoting by @ the distribution of the random variable Z. A measure of the quality of this estimator can be given by

15~ o = ( [(u(2) - Fa(2)a(o)) -

The tools developed later in this chapter can be applied to get | F}, — Follq = Op(n=/3).
One may choose to impose some extra assumptions on the objective function by defining

ar

A, =<{F:R—-[0,1], 0<
2 { [7]) dZ

(z) <M, Fis concave.}

In this context, it will be possible to show later in this chapter that |, — Fy|o = Op(n~%/®). Finally, if one is interested
in a parametric case and defines

As = {F ‘R — [0,1], F(2) = Fy(6z), 6 € R and Fy(x) = 1i }
e(E

In this case, ||Fn — Fyllg < C’|én — 0| = Op(n=1/2).

8.2.2 Theoretical convergence of maximum likelihood estimators for densities
Assume that we are provided with a set of densities (with respect to a given measure p)
{po : Qe @}

to which belongs a density pp,. The statistician is provided with a sample Xy, ..., X,, of common distribution py,. A
suitable notion of distance for this problem is the so-called Hellinger distance h given by

o~ (4 o)

This distance is controlled by the Kullback-Leibler divergence (which is not properly a distance) K that is defined by

K(p.q) = [og (%) pl)dp(z).

Note that the integrand is continuous (and takes the value 0) on the frontier of the support of p, hence no problems of
integration occur in this case. Obviously, the K(p,q) = +o0 if ¢ is not absolutely continuous with respect to p.

Proposition 23. We have that K(p,q) = 0 and that h*(p, q) < %K(p, q).

Proof. At the cost of reducing the set of integration to the support of p, we can assume that p(x) > 0 and ¢(z) > 0. A
simple function study shows that Vv > 0, we have

1
log(v) <v—1 and B log(v) < v'/? —1

K(p,q) = Jlog (Z;)deZf(; —1) pdu:fqdu—deu: 1-1=0

1 1 P q'/? 1
S K(@.q) = J§log (q) pdp > J <1 i | pln=1- fpl/Qq”Zdu =3 fpdu -~ fqdu — JQPUqud/L = h*(p,q)

O

Hence,
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The maximum likelihood estimator is given by

Py, = argmin Z log <pp990((X-l)))

be® 1

where the right hand side can be interpreted as the empirical version of the Kullback-Leibler divergence. By definition of
the estimator, we have

1 ¢ Do, (Xi) 1 Do, (Xi)
= — E 1 0 = — E 1 2 — K 5 )+ K 5 ).
! n % (2 0, (‘ii) Lo o8 Dg,, (‘-ii) (pampe") (pgmpe")

Then

< sup

K(poy,pg,) <
Z=S)

") log (ﬁz g;) — K(pao-p3,)

i=1

1 ¢ Po (Xz‘))

= lo o — K (pg,,

3 2 tos () om0
But one already know that for any fixed 6 € ©,

i;log <m> — K(pg,,pg) = Op(n=1?).

Finally, one can see that if one is able to derive a uniform type of central limit theorem, one will be able to give the order
of magnitude of the convergence of K (py,, pén) towards 0.

8.3 Maetric entropy, covering and c-nets

8.3.1 Covering numbers

We begin with the definition of the metric entropy in a general pseudo-metric space D. The space is endowed with a
pseudo-distance d (i.e the only axiom of a distance that is not verified by d is d(z,y) = 0 = x = y). In the following,
we denote by Bg(z, ) the open ball centered at = and of radius € > 0.

Definition 7. Let (D,d) be a pseudo metric space.

e A covering of radius € of a set A in the metric space D is a set C defined as a finite union of balls of the form
By(z, ) such that C contains A. The elements x € D do not necessarily belong to A.

o The set of coverings of A is denoted Cov(A).
e For a covering C of A, we denote by Centers(C) the set of the centers x of the balls used in the covering C.

We define the covering number N (e, A,d) as the minimal number of balls needed to cover A:

N(e,A,d) = min |Centers(C)|.

CeCou(A)
Note that the min is a priori an inf but the number of elements in Centers(C) is an integer and since the infimum is taken

over a subset of natural numbers, this is a minimum. The quantity H (e, A,d) = log N (e, A, d) is the e-entropy of the set
A. Finally, we say that the set A is totally bounded is the e-entropy H (e, A,d) is finite for every € > 0.

Since we are interested in sets that are totally bounded, it is not important to assume that the centers belong to A or
not. Indeed, if a covering C = u; By(x;,¢€) exists, it is always possible to find another covering u; By(z}, 2¢) where 2} € A.
In the literature, a covering such that the z; belong to A is called an internal covering and is called an external covering
in the opposite case.

Entropy of a set of functions When the metric space is L,(R), we denote by H(e, F,Q) := H(e,F,| - |p,q) the
entropy of the set F with respect to the metric
1/p
o= ([ 17 -araq) .

Of course, as in Definition 7, the set F is included in the ambient metric space which is L,(Q) in this case. We denote by
Hy (e, F) the c-entropy for the infinite norm | - ||.
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Definition 8. We denote by N, p(e, F,Q) the minimal number N such that there exists couples (f&, fF)N., of elements
of L,(Q) such that

o Foralli, |f} — f|pq <e.
e For all f € F, there exists i€ {1,..., N} such that fL < f < f&.
The value of H, p(e, F,Q) = log N, 5(e, F,Q) is called c-entropy with bracketting of F.

One has to note that, a priori we only impose that the bounding functions belong to L,(Q) and not the entire set F,
but when the entropy with bracketing is finite, every function f € F is at L,-distance bounded by ¢ from an element f7
which belongs to L,(Q). Hence this impose that F < L,(Q).

Exercice 22. [fD=R and A={zeR: |z| <k} and d = | - | show that N (e, A,d) < [k/z].
One has the following ordering between the different entropies.
Proposition 24. For all 1 < p < o and Ve > 0,
H,(e,F.Q) < Hy (e, F,Q).
If Q is a measure of probability,
Hy5(e,F,Q) < Hy (5, F)
If AcD and d,d are two pseudo-distances on D such that Vx,y € D, d(x,y) < d'(x,y) then
H(e,A,d) < H(e, A, d').

One could have added, in the previous Proposition, the fact that if two metric spaces (D, d) and (D’,d’) are isometric,
then there is a correspondence between the covering of D and the ones of D'. We will use this fact without proof in the
following examples.

Proof. Left as an exercice O

8.3.2 e-nets

An e-net of a set A is a finite family (¢;);—1,... n of elements of A such that
e For any i # j, |¢; — ¢j| > ¢,
e The set {c1,...,cn} is maximal with respect to the inclusion order.

It is direct to see that there is a link between the covering number and the existence of an e-net for a set A. This is
formalized in the following result.

Proposition 25. A e-net (¢;)i=1,....n of a set A forms the centers set Centers(C) of a covering C of A.

Proof. Let (c;)j—1,..,n be a e-net of A. The collection of the balls of radius € centered at the ¢; form a covering. Indeed,
if it was not the case, we would be able to find a point = € A that do not belong to one of the balls By(c;,¢). That would
mean that {c1,...,cy} U {x} is also an e-net of A which contradicts the maximality of the initial e-net {c1,...,enx}. O

Lemma 10. If A = B4(0, R) = R? endowed with the Euclidean distance d, then the covering number is such that

2R+ ¢ d
s .

N(E,A,d)<<

Proof. Let (¢;)j—1,..,n be a e-net of the ball B;4(R). By Proposition 25, it also forms a covering of Bq(R) then we have
N(g,A,d) < N. Tt is also true that

N

U By (Cj,g) c By <R+ E) .

) 2 2

j=1
The intersection of two balls By (cj7 %) is empty or reduced to a singleton. Hence one can compare the two Lebesgues

measures of the previous sets to get
N
e\d €
ina(3) <ma(R+3)
j=1

where jig = 2r%?d=TI'(d/2)~" is the volume of the unit ball in R?. Rearranging the last inequality gives the result. O

d
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8.3.3 Examples
Example 5. Let ¢1,...,0q € L2(Q) fized functions of unit norm and let

d
]:={f= DOk 0= (01,...,00) R | f 2,Q<R}-
k=1

Then one has that for all € > 0,

2
Hy(e, F,Q) < dQlog( R+€>

where dg is the rank of the matriz ¥ = S¢¢TdQ with the notation ¢ = (¢1,...,dq). Indeed, one can see that there is a
bijection that preserves the scalar product between F and the set of RY given by

d
{u— Dl Oker: 0= (01,...,0a) € R, u] <R}

k=1

where the vectors ey, are such that Vi, j, the scalar product is given by e; - e; = §¢:0,dQ. Of course, if (ex)r forms a
orthonormal basis then the result holds with dg = d by the use of Lemma 10. Otherwise, one can use the orthonormalization
of Gram-Schmith to form an orthonormal basis e/, .. ., efiQ where dg is given by the rank of the Gram matriz G = (e;-€;); ;.
But since G = X, one has the result.

Example 6. Let
F ={f:X —[0,1] non-decreasing}

where X is a finite subset of R. Then one has Hy(e,F) < e llog(n + e~ !) where n = |X|. To see that, define
1 < ..., < x, the elements of X. We define, for all f € F,

M = V(“")J Vi=1,...,n.

v €

= EMif, then |f — flo < e. Also, the set of discretized functions F = {f : f € F} is finite since 1 < le <
< |e7t] are natural numbers. Ezact computations give that

| = (” fgli] J) <t el

Since F induces a covering of F, we get an upper bound of the covering number that gives the result.
Remark 2. A famous result by Birman and Solomgjak finally gives that Hy (e, F,Q) < Ae~' (see Chapter 11)

Example 7. Let
F={f:[0,1] = [0,1] such that |f'| <1}

then there exists a constant A > 0 such that

Hy(e, F) <

AES

, Ve>D0.

To justify this, let 0 = ag <,...,an = 1 such that a = ke for k=0,...,N — 1. Let By = (ax—1,ar]| and
N
; f(ak)
= 1g,.
f 1;15{ - By

We have that ||f — f|| < 2¢, by construction and the values off are the e M where M is an integer. Moreover,

|far) — Flan—1)| < |f(ar) — flan)| + [ flar) = flar—1)| + | f(ar—1) — flar—1)] < 3¢

To define the value of f(ao), we have |e~1| + 1 possibilities. Then for the choice of f(al), the previous inequality only

leave 7 possibilities. This is also 7 possibilities for flaz) and so on. Finally, there is no more than (|e='| + 1)71=") such
functions f. Then

1 1 A
Hy (26, F) < glog7+log(g +1) < ’~

for A a universal constant.
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8.4 A first result under entropy with bracketing

In the following, we will say that an empirical process (1 3" | f(X;))ser is P-Glivenko-Cantelli when

n

LS px) — ()

n i=1

sup 250.

feF

This notion corresponds to a LLN that holds uniformly on the entire class 7. We now expose the simplest theorem using
the finiteness of the entropy with bracketing for proving the uniform first order convergence of the empirical process. The
following result is inspired by the proof of the classical Glivenko-Cantelli Theorem 5.

Theorem 17. Let F be a class of functions. We assume that Hy p(e,F,P) < oo, for all ¢ > 0, then F is a class
P-Glivenko-Cantelli.

Proof. Let ¢ > 0. By assumption, N := AN(e, F,P) < oo and then there exists a finite class {fZ, fZ}¥ | such that
IfF — fF| < e and Vf € F, 3i such that f < f < ff. Then

J fd(p, — P) = f fdp, — J fdP < f fRap, — f fdp
= [ saw, = py+ [ par
< f fRd(P, — P) +«.

Similarly, we have that § fd(P, — P) > § fld(P, — P) —e. Since {fF, fF}¥, is a finite set, a direct use of the classical
LLN gives that

L o a8
Jmax, Ufl d(P, — P) 0
_max ’ J fRd(P, — P)]| 5 0.

Then, with probability 1, for n sufficiently large, one has that

sup
feF

de(Pn - P)‘ < 2%

and the result is proved. O

In fact, the finiteness of the entropy with bracketing has a second consequence that we expose in the following lemma that
deals with the enveloppe of the class F. The function

F =sup|f|
feF

is called enveloppe of the class F.
Lemma 11. Assume that Hy g(e,F, P) < o for all e > 0. Then F € L1(P).

Proof. For every € > 0, Hy g(e, F, P) is finite so is Hy (e, F, P) by Proposition 24. As a consequence, (F, |- |1,p) is totally
bounded and then F is pre-compact. It is also immediate to see that every function f € F belongs to L;(P) since it is at
L;-distance bounded by ¢ of a function in L1 (P). Since the space L,(Q) is complete we have that F is also complete. But
since a pre-compact set which is also complete is compact (this is actually an equivalence), we have that F is compact.
Moreover, f — | f|1.p is a continuous function, it is a bounded function (that also attains its bounds). Then, there exists
R > 0 such that

sup [ fll,p < R.
feF

Now, fix € > 0, so that for any function f € F, we have that f < f < f and then

N
FIL<IEE IR = R < DI+ 1 = £

i=1
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where N = exp(H; p(e, F, P)). Then

N
|F|1p < Z | FF — fEup < N(R + 2e).

This insures that F' € Ly (P). O

This last result gives an indication on the minimal assumptions that one would impose to have the uniform LLN. Indeed,
one has the fact that the last result is actually necessary (under the extra condition that the set F is bounded in L; (P)).
This last hypothesis is, of course, necessary since one can think of the P-Glivenko-Cantelli class of the constant functions
that do not have an integrable enveloppe. In the other theorem that we will present (Theorem 18), this necessary condition
will be assumed.

Proposition 26. If the class F is P-Glivenko-Cantelli and bounded in L1(P), then F € Li(P).
Proof. Since F is P-Glivenko-Cantelli, sup sz |P,, f — Pf| <> 0. But

L lf06,) = Al < suplPf = PA|+ (1= & )suplPaf = P
feF nj rer

then n~! sup ;x| f(Xn) — Pf] 2% (0 which implies that P (supsex | f(Xn) — Pf| = n,i.0.) = 0. By Borel-Cantelli Lemma
42, one has that E [sup ez | f(Xn) — Pf]] < X, P (supser | f(Xn) — Pf] = n) < 0. The random variables X; are i.i.d. so
that we actually proved that E [sup;.x |f(X) — Pf|] < o0. Since F is bounded in Ly (P), we have that

E[F] <1E[supf(X)Pf
feF

+ sup |Pf| < +c0.
feF

8.5 A second result under empirical entropy control

The objective of this section is to prove the following theorem.

Theorem 18. If the enveloppe F' of F is in L1(P) and if
1 p
ﬁHl(e,]-', P,) —0, Ve>0,

then F is P-Glivenko-Cantelli.

This results is much weaker than Theorem 17 in two perspectives. First, the condition holds on a notion of entropy that
is smaller since, by Proposition 24 the H; entropy is bounded by the entropy with bracketing H; p. Secondly, the order of
magnitude is bigger (op(n) against the O(1) for Theorem 17) which allows a little more freedom in the research of upper
bounds for the entropies. Nonetheless, the price to pay is to deal with an entropy that is now a random variable.

Proof. See Section [XXX] O

8.5.1 Symmetrization

We will use the following lemma in the proof of Theorem 18. More results of this flavor can be found in the excellent
[4]. This kind of results link the theory of empirical processes to the theory of Rademacher chaos where another notion of
complexity for sets is defined. This complexity is the so called Rademacher complexity. [Develop this point]

Lemma 12. Let X1, ..., X,, be independent random processes X; = (X, s)seT assumed centered (i.e. Yi, Vs, E[X; ] =0).

Let eq,...,e, be i.i.d. Rademacher random variables and independent from X1,...,X,, then
sup ’ € Xis|| < E|sup ) Xis sup ‘ € Xis
lSGT Z ] lSET Z seT Z

and

E|sup > Xis| < 2E |sup ) ;X5
lsET; 1 (3) lSET; ]
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Proof. We begin with the proof of (1). Since the processes X; are centered, it holds that

[Sup‘ Z Xzs

seT SET

B e

e
2

q
I
—_

—E|sw|E| Y X, - XL.|X],..., X, ‘
seT i=1 ’
< E |sup Z(Xi’s - X, 1 (by Jensen’s inequality used twice)
seT '
=E |sup Z ei(Xis — X7 4) 1 (by symmetry of X; , — Xj , in distribution)
seT i1
lsup‘ Z €iXis ] (by triangular inequality)
seT

where X/ is an independent copy of the random variable X; ;. The inequalities (2) and (3) can be proved in a very
similar manner. O

The symmetrization that we used in Lemma 12 is a general idea that can also be used to prove that the concentration of
the empirical process is of the same order of its symmetrized version. More formally, we have the following result.

Lemma 13. Assume that for any function f € F and a § > 0,

P (de(Pn —P)‘ > g) < %

(igufdp P>\>5> 2P<?‘S£de<pn_m>>g>

where P! is the empirical measure defined on (X{,..., X ) which is a independent copy of (X1,...,X,).

Then, it holds that

Proof. Denote by X the vector (Xi,...,X,) and by Ay = {X: |§fd(P, — P)| > é}. We also define A = User Ar- By
definition of A, if X € A means that there exists f* = fx € F such that X € Ay+. As a function dependent of X, f* is
then a random function in F. By independence of P, and P’

P (Af* and Uf*d(P,’l —P)’ < g) = Ex [IP’Xf (Uf*d(P,’L —P)) < g) ﬂAf*]
> %]P’ (Age) = %JP’ (‘ Jf*d(Pn - p)|> 5) .

Using this inequality, we find that

<§2£]dep P(>5> (Xe UAf>

feF

Il
N
=

—
\
*
~
=
V
o
=
=]

a.
—
kﬁ

*
N

|

~__

SUP‘de(Pn_Pr/L)
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To get a result of the form of Lemma 12, one can apply the Rademacher random variables trick and get the following
result.

Corollary 5. Let e1,...,e, be Rademacher random variables independent from the X;. Then, under the hypothesis of

Lemma 135,
1 ]
Sup‘ Fd(P, P)‘>6 < 4P Supfz efx) = 2.
feF feFin 4
Proof. The proof used the same ideas as the proof of Lemma 12 and is left as an exercice. O

[STATE A RESULT ABOUT THE LINK WITH RADEMACHER COMPLEXITY]

8.5.2 Dudley entropy integral

In this section we derive a result that is the starting point of a general theory known under the name of chaining technique.
This idea was first introduced by Kolmogorov [8]. The idea is to reduce a supremum over an infinite class to a supremum
over increments of a process where each increment can only take a finite number of values. The original idea comes from
Dudley [7] and further studied and extended by Talagrand (see [15]).

Lemma 14. Let X1,..., Xy be sub-gaussian random variables G(v) (i.e. YA >0, E [e*¥i] < eNv/2). Then

E [ max X] 4/ 2vlog N.

i=1,...,

Proof. By Jensen’s inequality, YA > 0,

o, 5]) <o g, )

=E [Z=I{1,a)fN exp (AX; )]

N

)\2
ZE exp (AX;) Nexp< 21))
i=1

Taking the logarithm, we get that for all A > 0,

log(N) v
PR

E [.max Xi] <

yeeey

Since the left hand side does not depend on A, one can minimize in A the right hand side. Hence, taking A = 4/2log(N)/v,
we get the result. O

Theorem 19 (Dudley entropy integral). Let (T, d) be a metric space and let (X;)weT be a process indexed by T such that,
for allt,t’' € T and all X > 0,
N2d2(t, ¢
log E [exp A(X; — Xu)] < %

Then, for everyto e T,
5/2

E [sup | X: — Xto] <12 VH(e, T,d)de (8.3)
teT 0

where 6 = sup,ey d(t,to). In particular, for D = diam(T),

E [sup (X: — Xs)] <24 o VH(e, T,d)de. (8.4)
0

t,seT

Proof. We assume that the metric entropy is finite for any € > 0 otherwise the bound is trivial. Actually, one can only
take H(e, T,d) finite a.s. but the following is trivially adaptable to this general case. We start by assuming that 7 is
finite. For any j € N, we define §; = 6277. For any j € N, N; := N(8;,T,d) is finite and then there exists a finite
covering Uf\gl By(z,9;) of T. Let T; be the finite ensemble of the centers of that covering. For every j € N, we define a
function II; : 7 — 7; that associated any ¢ € 7 to a point in 7; such that d(¢,1I;(¢)) < d;. There may be more than one
possibility for II;(¢). When it is the case, one may choose any of the candidates arbitrarily. We finally define 7y = {to}
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and Ho(t) = to.
Step 1: We have that,

o0
Xi = Xy + Y Xy, ) — X1, -
j=0

Indeed, since the set 7 is finite, the infinite sum is actually finite and for j large enough Xy, ;) = Xi.
Step 2: Then one has that

0
E {SUP | X — Xto'] <) E [SUP [ X140 0 — an(t)|]
teT j=0 teT

Furthermore, [{(IL;(¢),II;11(¢)) : t € T}| < exp(2H(d;+41, T, d)) and the triangular inequality of d gives
d(1L; (1), 1 41(8)) < d(IL;(2), ) + d(t,11j41(8)) = 65 + 41 = 3041

Then the variables X1, (1) — X1, (¢) are sub-Gaussian of constant 95J2»+1 so that one can use Proposition 14 to get

E [iqu |an+1(t) - XHj(t)|] < \/2 x 95J2'+1 x 2H (8;41, 7T, d) = 65j+1\/H(5j+177—, d).
€

Then summing these inequalities we get

0 0 6/2
E [sup X — X, || < SV 66,0/H(S;, Tod) =12 (8, — 8,00\ /H(5;, T, d <12J H T, d)de
s Xl < 3BT ) =12 30, 10 o) < 12 [ VAT

where, in the last step we used the classical comparison of Riemann sums and integrals on the non-increasing function
0 — H(6,T,d). As a by product of the result, we obtained that for any ¢ > 0, there exists n > 0 such that for any finite
and thus countable subset S of T,

E| sup |Xs—X¢| <e. (8.5)
s,teS
d(s,t)<n

Step 3: In the general case, by the assumption on the finiteness of the integral, (T, d) is totally bounded and then separable.

Then, there exists a countable set S dense in 7. Let us take Xt = X, for any t € S and Xt = lim X where the limit is in
the L; sense by the help of Equation (8.5). Then (X,);cr is modification (see Definition 19 for a concrete definition) of
(X}t)teT that has a.s. continuous paths. By continuity of the paths; Equations (8.3) and (8.4) are satisfied for the process
(Xt)teT where the sup is taken on the entire set 7. We finish the proof by saying that, by construction,

E* [sup | X: — Xt0|] =K [sup |Xt - )N(t0|]
teT teT
where the left hand side expectation has to be taken as one of the generalized expectations of (8.1) or (8.2). O

As a by product of the proof of Theorem 19, we get that one can construct a continuous version of the process (X;); when
the entropy integral is finite. In fact, Theorem 19 can be generalized for other classes of random variables and then have
as a consequence the famous Kolmogorov continuity theorem. This aspect is briefly treated in Section [XXX].

Remark 3. It is a theorem that makes the link between a discrete and finite case to a continuous and infinite case. As
the vigilant reader may have noticed, the only use of the distance property is made through the triangular inequality. As a
direct consequence, the same theorem is true for spaces (T,d) where d is only a pseudo metric. Of course, the definition
of entropy does not change under this alternative setting.

8.5.3 Sudakov Minoration

For this section, we follow the excellent [9]. The subject of this part is to understand the specific case of gaussian processes
for which we show that entropic lower bounds are achievable. This complete argument is called Sudakov minoration. This
part uses intensively the ideas behind the so-called comparison theorems where Slepian’s Lemmas form the key stone
of this section. We begin with a simple lower bound of the maximum of a collection of independent Gaussian random
variables.
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Proposition 27. Let N > 6. Let X1,..., Xy be i.i.d. standard Gaussian random variables. Then, there exists a universal
constant C' > 0 such that
E [ r{laxNXi] = C/log(N)

Moreover, it holds that
E [HlaXz':l,...,N Xi]

1
21og(N) N—w

Proof. Since the variables X7, ..., X, are centered, we see that E [max;—1,. v X;] = E[max;—1 . n(X; — X1)] where the
last inequality show that the the quantity is non-negative since max; X; > X;. For any § > 0, one has that

0 i=1,..., 0 i=1

goony

0 S
E [__r?aXNXi — Xl] = f P ( max X, — X1 > t) dt = J IP’( maXNXi - X1 > (5) dt =0[1-(1-P (X2 — X1 > 5))1\7—1].

so that if we choose ¢ such that P(Xy — X7 > §) = 1/(N — 1), we have that

4 R Ry -1
E[imaxNXz]Zé[l (1 N—l) ]2(1 e )o.

.....

But P(Xo— X; >6) =P (N > %) =1/2-P (0 <N < %) where NV is a standard Gaussian variable. But

J-f /24 — J J-f —t3/2—t3/2 g4 ¢ fW/QJ —P*2dpdf = 1
e = - —e”
7 2 1ate < ﬁ P P

so we have that P (Xy — X; > §) > 1/2(1 — +/1 — e=9%/2). The condition on J is verified if one takes

1 1
5(1 —V 1-— 6762/2) =

N -1

which is verified for § = /2log((N — 1)/4). We finally have that

E L maxNXi] > (1 —e1)4/2log((N —1)/4).

[RRRE}

Finally, one can conclude the first fact of the Proposition by showing that for there exists a constant C such that
(1—e1)4/2log((N — 1)/4) = C/log N. The constant e~* can be reduced by taking for example § = 4/2log(p(N —1)/4)
the bound becomes (1 — e?)4/2log(p(N — 1)/4) and we get

E [max;—1,... ~ X;]
21og(N)

by taking p — oo. 0

lim inf >1

In the proof of Theorem 21 we will use the result of Proposition 27 in the form

EL max X,-] 2% Tog(N) (8.6)

=1,..,N

where this sub-optimal result can be optained with simpler calculations than in Proposition 27.

Comparison Theorems

The comparison theorems deal with the domination of the probabilities of some events of a gaussian vector X by the same
probability for another gaussian vector Y such that Y dominates X in a certain sense. The meaning that one impose
behind the domination can take various forms. In the sequel, we mainly deal with the case of domination in the covariance
structure.

Theorem 20. Let X = (X;,...,Xy) and Y = (Y1,...,Yy

)
E[X;X;] <E[Y;Y;] for(i,j)e A
E[X;X;] > E[Y;Y;] for (i,j)e B
E[X,X;] =E[Y;Y;] for(i,j)¢ AuB
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for A and B being disjoints subsets of {1,...,N}2. Let f be a function on RY such that its second derivatives in the weak
sense of distributions are such that

am 0 fOT (Z,j) €A

>
6“ <0 for (Z,]) € B.

Then
Ef(X)]<E[f(Y)].
Proof. Since the conclusion of the theorem is purely in expectation, one can assume that X and Y are independent and

consider for ¢ € [0,1] the random variable Z(t) = (1 — #)"/2X + t'/2Y. Denote by ¢(t) = E[f(Z(t))] so that one can

differentiate ¢ to get
N

¢'(t) = Y B[a:f(Z(t)Z{(t)],

i=1

where Z!(t) = Y;/(2+/t) — X;/(24/1 —t). Using Stein identity in Proposition 37 for the function F' = 0;f and on the
Gaussian variable X, Y we get that

N

/ & Vit 1-1¢ 1
E [0, f(Z(t)Z)(t)] = YR[YY] - Y R[X.X;] ) E[0,£(Z(1)] = = Y (B[Y;Y;] — E[X, X;)E [0, £(Z(1))] .
A Z0) = 3 (B0 - 3B IK] ) B Z00] = § R E ] - EXXDE (s (0]
Then in the matricial notations, we get that
#(0) = 5 Tr (B[V2F(Z(1)] (B — 2x)) 87)
The condition of the theorem imply that ¢/(¢) > 0 and then E [f(X)] = ¢(0) < ¢(1) = E[f(Y)]. O

Theorem 20 has important consequences as Slepian lemma that allows to upper bound the maximum of a collection of
Gaussian random variables with the maximum over another collection of Gaussian variables of greater covariances. It is
also possible to extract more information of Equation (8.7) to quantify the difference of the values of the maxima when
one controls the difference in the covariance matrices.

Lemma 15 (Slepian 1). Let X = (Xy,...,Xy) and Y = (Y1,...,Yn) be two centered Gaussian vectors in RN such that
E[X;X;]| <E[Y;Y;] foralli+#j
E[X?]| =E[Y?] foralli.
Then for all real numbers \1,..., AN,
N N
P (U{Yz > /\i}> <P (U{Xi > Ai}) :
i=1 i=1

This lemma is the main ingredient to show Markovian-like results on stationary Gaussian processes. For example, one has
the following consequence.

Exercice 23. Let (X:)i=0 s a stationary Gaussian process such that for any t > 0, E[X;Xo] = 0 show that for any

AeR,
P sup Xe<A|=P| sup Xy <A |P| sup X; <A
te[0,S+T] te[0,5] te[0,T7]

A important use of Theorem 20 is for the function

1 S Az;
flz,...,xN) = Xlog Ee i (8.8)
i=1

This function is suited to the study of maxima of random variables as seen in Lemma 14. We remark that the derivatives
of f satisfy that Zfil 0;f = 1 and then Vj fixed, ZZI\LI 0;.;f = 0. In particular, we can write that

diif =— Y. dijf. (8.9)

Jij#i

We use this fact in the following corollary.
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Corollary 6 (Slepian 2). Let X = (X1,...,Xy) and Y = (Y1,...,Yy) be two centered Gaussian vectors in R such that
for all i,j one have E[(X; — X;)?] <E[(Y; — Y;)?] then,

IE[ max X; <E[ max Yi].
i=1 i=1,..,N

yeeny

Furthermore, if |E[(X; — X;)?] —E[(Y; = Y;)?]| <€ for all i,j then

< +/elogN.

Proof. Consider the function ¢ of the proof of Theorem 20. In the sequel, we denote by d; ; = ZX] and we also omit
to write the argument Z(t) of f and its derivatives. Using the notation, v;\; = E [(X; — X) ] and vy, =E[(Yi-Y;)?],
we see that vfj - v;XJ =0;; +6;,; —26; ;. By (8.7), we have that

‘]E[ max XZ-]—IE max Yi]
i=1,...,N |i=1,..,.N

' (t) = %ZE[ai,jf] 05,
:*ZE zzf 627,"‘ ZZE Jf .7
i JJ?éz
:_72 2 E[0:,;f]6ii + 5 Z Z E[0:;f101;
i g Rl
:% N E (0141 (6 — 61)
ijigi
=1 Y B -0 i) = 1 ) Blos el - o).
i B

Moreover, the derivative 0; ; f are negative (for ¢ # j) and then this last term is positive under the hypothesis of the first
part of the corollary. Hence E[f(Y)] = E[f(X)]. But as in the proof of Lemma 14, we use the following inequalities

Ax;
z:I{laux T < log < E e ) —log N + I{laXN T4 (8.10)
to say that E [max; X;] < E[f(X)] <E[f(Y)

] log N + E [max; Y;] and letting A — oo gives the first result. For the
second part, we see that since |0; j f| < 1/A and

< i
v 5} v);| < e, we get that ¢/(t) < Ae/4 and then

Ae
ELCO1- B < |[ o] <.
Then using (8.10), we show that
’E[ max Xi] —E[ max YZ] < E log N
1=1,..., 1=1,..., 4 A
and the result follows by optimizing in A. O

With this new tool, one is able to prove the following result that is due to Sudakov.

Theorem 21. Let X1,..., Xy be centered Gaussian random variables. Then,

E Lzm’?% X] > lg?\/]E [(X: — X;)?]log N.
Proof. Let Z,...,Zy be iid. standard Gaussian variables and set § = min;.;(E [(X; — X;)?])"/? and finally let Y; =
§Z;/\/2. By definition of the random variables Y;, E [(Y; — Y;)?] = 6% < E[(X; — X;)?] and so by using Corollary 6, we
get that 6F [max Z;] < v/2E [max X;]. We finish by using the consequence (8.6) of Proposition 27. O

The great consequence of Sudakov minoration is that it gives a lower bound on the suprema of a Gaussian process. Indeed,
if 7 is a space endowed with the pseudo metric d(t,s)? = E [(X; — X)?], then for all 0 < e < D = Diam(T), then for a

centered Gaussian process (X;); we have

1

E [sup Xt] > 58\/H(8,7-, d). (8.11)
teT
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This bound is to be compared with the Dudley entropy bound in Theorem 19. The two orders of the bounds differ. Indeed,
Dudley’s upper bound is proportional to the integral of the curve 4/ H (e, T, d) whereas the bound in (8.11) is proportional

to area of the smallest rectangle ¢ x 4/ H(e,7T,d) which can be significantly smaller when the curve 4/H (e, T, d) is very
quickly close to the abscisse axis. In general, for Gaussian processes, the Sudakov lower bound is tight whereas the bound
of Dudley is not. There exists a better chaining technique called generic chaining after the invention of Talagrand (see
[15]) that allows to bridge the gap between the two bounds. This technique will be exposed in Chapter [WRITE THIS].

8.6 Proof of Theorem 18

In order to prove Theorem 18, we give three successive lemmas that use Dudley bound along with symetrization.

Lemma 16. Let X4,...,X,, be i.i.d. random variables and let €1, ... e, be i.i.d. Rademacher Rad(1/2) random variables
independent from the variables X1, ...,X,. Then,

D’Vl
] < brer Ml gy [ [HET L )
n 0 n

1 n

LS ep(x)
n 7;1 K3 (2 \/7

where Dy, = sup ez | fllnco for | fllno = maxi—1 .. [f(X:)| and | f|
the expectation operator on the random variables €; at X; fized.

E. | sup
feF

5.0, =n ' 20 f(Xi)?. The notation E. holds for

Proof. In order to use Dudley’s bound, one has to verify that the increments of the process (3, &;f(X;))s are sub-
Gaussian. For any two functions f and f/, the random variable Y. | &;(f(X;) — f'(X;)) can be seen as a Rademacher
chaos of order 1 and hence is a sum of independent and bounded random variables. This fact allows us to use Hoeffding’s
inequality given in Theorem 9. This gives that the increment is sub-Gaussian of constant n=2 %" | (f(X;) — f/(X;))? =
(ﬁ\\f — f'|2,p,)?. We use Dudley entropy bound on the set F, then for a f, € F,

6 /2
<IZJ H(e, F,n~Y2|| |

2,p, - But using Hoeffding inequality on Y., €; fo(X;) we get that

n

% Z e f(Xi) = fo(Xi)

6 /2

)t =12 [\ [H (e F ) ar, e

0

E. | sup
feF

where §,, = n~1/2 supy [ f — fo

Lo o 1o D (oon2 V2| foll2.p sup [ fz2,p
El|= ) efo(Xi) :f P(|= > efo(Xs)| >t dtéj 2e "X dt = — < =
l n; 0 n; . 4yn NG

and by a change of variables &’ = y/ne, we get that

On/2
|7 Vrme s
0

Vs T F Du [ :
|2,p, )de = f \/ (7 ”2’P")de’ < J \/Mdg
0 n 0 n

Of course, one has that H(e,F,|.

2,p,) = Ha(e, F, Py).

Lemma 17. Let R > 0 and assume that sup;cz | f|o < R. If

1 P

ﬁHg(a}', P,)—0, Ve>0

then F is P-Glivenko-Cantelli.

Proof. Since the random variables are uniformly bounded, Remark 4 can be applied and then one only have to prove
the weaker supg |P.f — Pf| £, 0. So one can prove that the convergence occurs in L; to have the result. By the

symmetrization argument prove in Lemma 12 and Lemma 16, we have
1< R B [Hy(e, F, P,)
=Ex |[E sup‘f i f(X; <—+24J ﬁda
] l ) Ler nz:Zl ) Vn 0 n

The first term tend to 0, then one only has to prove that the integral tends to 0. To use Proposition 1 to prove that the
random variables of interest are U.L., we notice that by brute force

n

E lsup |Pof — Pf] <2E lsulv ! Z eif(Xi)
feF

feFIN 3

NQ(Ev‘FaPTL) <-/\/‘OC(&\)‘/—:) < (R> )

3
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which is an integrable function, so that,

R R nlos (B R
Y, = J wdg < J %(E)ds = f v/log (R/e)de < oo.
0 0 0

Then, by the dominated convergence theorem (in its probabilistic version given by Corollary 11), Y, L, 0 and since (Yo)n
is U.I. (because bounded by Proposition 1) we also have that Y, 11, 0 which concludes the proof. O

We are now ready to tackle the proof of our main theorem of this section.

Proof of Theorem 18. For a R > 0, we define the truncated set Fr = {flp<r : f € F} where F is the enveloppe of the
functions in F. For two functions fi, fo € F, the function g1 = filp<r and g2 = folp<r belong to Fr. But then

f(gl — g2)%dP, = J-F R(fl — f2)%dP, < 2Rf\f1 — foldP,

which show that the assumption n=H, (e, F, P,) 0 implies that n = Hy(e, Fgr, P,) 0. Then, by Lemma 17, one
has that the set of functions Fp is P-Glivenko-Cantelli. Now, by integrability of F, for any J > 0 there exists Ry > 0 such
that SF; R, F'AP < 4. Since the trivial set {Flpsg,} and Fg, are P-Glivenko-Cantelli, one have that for n large enough,

sup
feF

f fd(P, — P)' <46 as. and f FdP, <2) as.
F<Rg F=Rgo
Finally, we write

de(Pn - P)‘ < sup
feF

sup
feF

| rae,- P>‘ dsupl [ g, - P)‘
F<Ry feFIJF=Ro
< sup

J Fd(P, — P)‘ + f FdP, + f FdP
feFIJF<Ry F>=Rg F>=Rg

<46 as.

which finishes the proof. O

8.7 Vapnik-Chervonenkis classes

In this section, we introduce the so-called V-C dimension invented by Vapnik and Chervonenkis [18]. We also refer to [7]
for the definitions and combinatorial properties of the notions defined below. The notion of V-C dimension raised in the
study of bounds for empirical processes of the form

sup |pn(A) — p(A)]
AeA

where p,, is the empirical measure corresponding to p. As one can expect, the efficiency of the convergence depends
deeply on the class of sets A. This context is simpler that the context of the beginning of the chapter but is informative
in general.

Definition 9. Let z1,...,x, € R* be fized points. We define the trace of the set A over the collection 1, ..., x, as
A@?) = {(Layen, -, 1s,ea) €{0,1}" : A A}

The shatter coefficient is given by

By definition, Sa(n) < 2™. The last n such that the inequality is an equality is called the dimension Vapnik and
Chervonenkis of A, this is
V =sup{n e N* : S4(n) =2"}.

If Vn € N* the shatter coefficient equals 2™ we define V = o0.
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Some examples of calculation of VC dimension

In this small section, we describe some examples of contexts where it is possible to show that the class admits a finite VC
dimension.

o Let A = {(—m,t] : t € R}. By the sake of simplicity we assume that the x; are ordered z; < 22 < -+ < Ty,
Then the elements of A(z7) are of the form (1,...,1,0,...,0). There are exactly n + 1 possible choices and then
Sa(n) =n+ 1. Since for n = 1, we have that n + 1 = 2" but for any n > 1, n + 1 < 2" we have shown that the
class A has VC dimension equal to 1.

e Let A= {[a,b] : a,be R}. Assuming again the z; ordered, the elements of A(z}) are of the form (0,0,...,0,1,

)
..,1,0,...,0). There are ("}%) —n = (n? +n +2)/2 such elements. Then S4(n) = (n? +n +2)/2. But for n = 1,2

we have that S4(n) = 2" but for n > 2 we have S4(n) < 2". In this case, V = 2.

o Let A={®%,(—w0,t]:t; € R} for d > 2. By a study similar to the first case, one can show that S4(n) < (n + 1)¢
and this allows to bound the value of V.

o Let A= {{z:0Tz > y}:0eR%yeR} the class of half space of R?. Then we have that S4(n) < 2(}) and a few
more calculation give that V < d + 1.

Exercice 24. Show that in the last example, S4(n) < 2¢ (Z) Hint: The hyperplanes are completely defined by d points

and the rest lie one one or the other side.

8.7.1 Sauer’s Lemma

Sauer’s Lemma is a result that allows to show that a class A that has a finite V-C dimension has shatter coefficients that
grow at a polynomial speed in n.

Lemma 18 (Sauer). Let A be a class of finite V-C dimension V. Then, for alln > 1,

Sa(n) < ;‘/1 (T;)

Proof. We need the following definition. We say that a set B < {0,1}" shatters a set S = {s1,...,8,} < {1,...,n} if
the restriction of B to the components s1, ..., s, is the full hypercube, that is

Bs :={(bs,,---,bs,.) :(b1,...,b,) € B} ={0,1}"".
We define the transformation
vy P({0,13") — P({0,1}")
B~ VU (B)={b:be B}
where Vb = (by,...,b,) € B we define b by:
1. If b is such that by = 1, then b = (0,bo,...,b,) if (0,bs,...,b,) ¢ B and b = b otherwise.
2. If b is such that b; = 0, then b = b.

e Fact 1: For B < {0,1}" and S = {s1,...,Sm}, we have that |¥;(B)| = |B| and B shatters S if and only if ¥,(B)
shatters S.

First of all, it is clear that ¥y is injective which imply that |¥;(B)| = |B|. Now assume that B shatters S. If 1 ¢ S, then
(V1(B))s = Bs and this case is obvious. In the other case, since Bs = {0, 1} there is no room for case 1 to modify b.
Then, we always have b = b and again (¥1(B))s = Bs.

e Fact 2: Define ¥o,..., ¥, analog transformations on the coordinates 2,...,n and let By < {0,1}" and B, =
U, 0---0W;(Bg). Assume that any set S of m indexes with m > V are not shattered by By. For an element v of
the final set B,,, we define

T, ={be{0,1}" : b; < v;}.

Then T, ¢ B,, and v does not have more than V ones.
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Indeed, we have seen that (1,vs,...,v,) € By = (0,v2,...,v,) € By. The following transformations may change the vector
V2, ...,0y but in both (1,vs,...,v,) and (0,vs,...,v,) in the same way, then (1,vs,...,v,) € By, = (0,v2,...,0,) € By,.
Similarly, Vi, (vi,...,1,...,v,) € B; = (v1,...,0,...,v,) € B;, that transfers to B,, too. This implies that every vector

with entries b; < v; are in B,, or equivalently, T, < B,.
Since By does not shatter S, B,, either (by fact 1). Now, assume that v has m > V ones and take S = {i:v; =1}. Sisa
set such that {0,1} = (T,)s < (By)s and then B, shatters S but this is absurd then v cannot have more that V' ones.

e Fact 3: Let T = u,epT, where V is the set of all vectors with no more that V ones. Then |B,| < T and |T| =
s (3)-

Since by fact 2, there is no vectors with more than V ones in B,,, we directly have B,, € T. T can be rewritten as the

disjoint union of the sets of vectors with exactly ¢ ones. This gives, |T| = ZE/:O M.
e Fact 4: Conclusion

The inequality is trivial for n < V since the sum equals 2" in that case. For the case n > V, let z1,...,x, € R* such
that By = A(z7]) and S4(n) = |Bo| (which exists by definition of S4(n)). If one set of indexes S with m > V would be
shattered by By that would mean that S4(m) = 2™ which is absurd! Then, we are in the case of fact 2 and

.
n
Satn) = 1ol = 1Bl < X (7).
i=0

O

As a direct consequence, we show that the shatter coefficient cannot grow exponentially fast when the V-C dimension is
finite as stated in the following result.

Corollary 7. Let A be a class of finite V-C dimension V. Then, for any n,
San) < (n+1)V

and in the special case n =V we have,

Proof. We have for all n,

=
-
N
@M<
=3
N
g
Sz
L=
=
3ﬁ
—
N
£
_|_
=

Ifn>VsoV/n<1and

8.7.2 Entropy on the hypercube
We define the Hamming distance p on {0, 1}" between two elements b, c € {0,1}" by,

We define a probability measure on a class of sets A relatively to a measure @ by

do(A, B) = (Q(AAB)'? =

The following theorems deal with the fact that V-C dimension bounds the entropy of A endowed with dg and A(z})
endowed with p.

Theorem 22. Let A be a class of subsets of RF of V-C dimension V < . Then, for each x1,...,2, e R y 0 <e <1,

\%4 4e

H(e, A(z1), p) < 1_71/61
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Proof. Let C. be a e-net of the class A(z}). We denote by ¢, ... ™) the elements of the e-net C.. For two different
points ¢(? and ¢\, we introduce

A j={te{l,...,k}: c #c()}
Let Y1,...,Yx be K independent uniform random variables on {1,...,k}. Then by the fact that ¢(¥ and ¢ are at
distance at least ¢ from each other, we have that P (Y,, € 4, ;) = \Am|/k > e2k/k = . Then
P(Vi,j < M :i+#j, at least one Y,,, belongs to A; ;) =1 —-P (34, <M :i# j,Vm, Y,, ¢ A; ;)
>1— M?P(¥m, Yy, ¢ A12)

K
=1-M> [[ P (Vi ¢ A1)

m=1
>1-M2(1-e3)K >1- M2 K

By taking K = |2log M /2| + 1, we see that the above probability is positive. In other words, there is a realization of the
random variables Y1 (w) = y1,..., Yk (w) = yx that satisfy the event (i Upn{ym € Ai;}. Since we have shown that for
()

any 4 and j, there exists at least one coordinate y,, for which cym # ¢y, any two elements of (Cy)y, . . (that is deﬁned
as the restriction of the elements of C. to the coordinates yi,...,yx) are also distinct. Then [(Cs),, .., yK| =1C| =
Without loosing in generality, we assume that |{y1,...,yx}| = K (or that the y,, are all distinct) since the previous

property remains true if one add extra coordinates. By Sauer lemma, for K >V,

K \4
M = [(Co)yr, ] < JAWE)] < Sa(K) < (V)

Now, if log M > V then K > V and we also have that

K delog M 4e log M 4 1
log M < Vlog <6V> éVlog( evog2 ) V(log—H O%/ ) <Vlog€—§+glogM,

from which we directly deduce that log M < 1= 1 =1 log . Otherwise, log M < V and this last fact is trivially verified. By
Proposition 25, C, is a covering of the set A(z7]) and then H (e, A(zT), p) <log M O

Theorem 23. Let A be a class of subsets of RF of V-C dimension V < co. Let Q be a probability measure on R¥. Then,

for each 0 <e <1,
46

H(e, A dg) < 1/

Proof. We proceed as in the proof of Theorem 22. Let C. be a e-net of the set A. The denote A®), ..., AMM) the points

(that are events) of C.. Let Y7,..., Yk be ii.d. random variables of law Q). Then P (Ym € A(i)AA(j)) > ¢2 be definition
of the e-net. We finish the proof by the exact same arguments as in the proof of Theorem 22. O

8.7.3 V-C classes for functions

In this section, we link the entropy on spaces of functions with a notion of V-C dimension for a class of sets related to
those functions. For a real valued function f : X — R, we define its subgraph as the set

SubGr(f) = {(z,y) e ¥ xR:y < f(x)}.
By an obvious use of Fubini theorem, for a probability measure @ on A and a non-negative function f,

Jf )dQ(a f ff(m 1dydQ(x f Tosysnd@ x N, 9)

where A holds for Lebesgue measure on R. It is then clear that for two functions f and g for which we denote by G and
G their respective subgraphs,

f (@) — g(2)|dQ(z) = L sy Q@ ¥ V) + L osyes-siadQ ¥ Nay)
- J 1y(2)<y<g(@)d(@Q x A)(@,y) +J 1y(z)y<y<f(@)d(Q x A)(2,y)
X xR X xR

~ [ 16,00,0)dQ x Nwy)

— (Q x N(G;AG,) (8.12)
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where we used on the second step the fact that the Lebesgue measure is translation invariant. This motivates the following
definition.

Definition 10. Let F be a class of real valued functions. We define the VC dimension of the class F as the VC
dimension of the class

G = {SubGr(f) : f € F}.
We say that a class F is a VC class if its VC dimension is finite.
Example 8. A somewhat obvious consideration is that the set of functions
F={lag:Aec A},

where A is a VC class, forms a VC class (in the sense of Definition 10) of enveloppe given by F = 1. This is particularly
well suited for density/measure estimation over a class of events that form a VC class. The following theorems show that
the entropy of such a class of indicator functions is therefore, for a constant A > 0

1
Hy(e,F,P,) < Alog (E) , Ve>D0.

In particular, the set F is P-Glivenko-Cantelli by the use of Theorem 18.

The tools developed for VC classes of sets can be used in this context to bound the entropy of a set of functions F by a
explicit formula that only depends on the VC dimension, the radius of the balls of the covering ¢ and the L, norm of the
enveloppe. It is remarkable that the following upper bound only depends on the subjacent probability measure @) through
| Flr.q, the L,(Q) norm of the enveloppe.

Theorem 24. Let F be a class of VC dimension V and such that for a probability measure Q, the enveloppe function
F e L1(Q) then for any ¢ € (0,1),

Vv 8e

e/ Q) < 77

Hy(¢|F log —.
1€l s

If, in addition, F € L,.(Q) then for any € € (0,1), one have that

H, (| F|

% 8e
< 1 .
T,Q?‘Fv Q) 1 _ 1/6 0g (8/2)r

Proof. We begin with the case r = 1 from which we will deduce the general case. As seen in Equation (8.12), Q|f — ¢g| =
(Q x N\)(GfAGy). We consider the probability P that is the measure @ x A conditioned to the set {(z,y) : |y| < F(z)}.
Then P = (Q x \)/2|F|1,¢. By using Theorem 23, we get that

Vv 4
10 FQ) = H2e|Fl1.0,0.Q x X) = H(VE,G,dp) < ——log

Hqi(2e|F log —
1 (2] s

where G is the set of the subgraphs of the functions in F. This gives the result for » = 1 by replacing € by /2 in the
previous chain of inequalities. For r > 1, by defining the probability measure R such that dR/dQ = F"~!/QF™"! we can
write

Qlf —gI" < QIf —gl2F)" ™" =2"7'QF"™™ x RIf — g

so that ||f — gl < 2(QF™ Y)Y x | f — gH}/; By direct comparison of the entropies for different distances, we get
a "0 v 8e
H(2 FT‘7-F7'T‘ <H " 77~Fa‘ =H ara ,‘/—-'7R<71 —.
(2 F 0. F. | ) ( o0 |1,R) R P R) < g7 o

O

As a direct consequence of the preceding result, one can show that a VC class have a finite entropy for the L; norm as
long as the enveloppe is integrable. Indeed, one can use Theorem 24 for any probability measure () = P, and since the
bound is completely uniform, one obtain

Corollary 8. Let F be a VC class such that the enveloppe F belongs to L1(P), then F is P-Glivenko-Cantelli.
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8.8 P-Glivenko-Cantelli classes through convexity
It is remarkable that the property of being P-Glivenko-Cantelli behaves well with the convexification of a set F.
Proposition 28. Let F be a P-Glivenko-Cantelli class then its convex hull Conv(F) defined by
P P
Conu(F) = {Z 0;f; :peN* 0, >0 and Z 0; = 1} (8.13)

j=1 j=1
is also P-Glivenko-Cantelli.
Proof. Let p > 1, let (f;);j=1,..p € F and };;0; = 1, then

UZ@f] (P, — P)

Zi:JPP)

()

| race. - P)‘

s

< sup
feF

Then sup recony () [ Pnf — Pf| = supger |Pnf — Pf| and since F is P-Glivenko Cantelli, so is Conv(F). O

This convenient fact is very useful in practice since one can prove that the extreme points of F form a P-Glivenko Cantelli
class to get that the entire class F is also P-Glivenko Cantelli.

8.9 Dudley entropy bound and Orlicz norm
8.9.1 A global bound

The ideas behind the proof of Dudley entropy bound are possible to adapt to prove the concentration of the supremum
over a class of random variables with sub-Gaussian increments. These fact will be useful to use the so-called peeling
device.

Theorem 25. Let (T,d) be a metric space and let (X¢)ier be a random process such that for all s,t €T,
HXS - XtHillz < d(sat)

where | - |y, is the Orlicz norm of section 7.3. Then, for all to € T,

5/2
12] VH(e, T,d)de
0

sup |Xt — Xt0|
teT

P2
where § = sup,erd(t,to).

In particular, we see that the suprema of a sub-Gaussian process is a sub-Gaussian random variable. The result of theorem
25 is global since it is true for all range of deviation. Indeed, there exist constants K, C' > 0 such that

P <| sup | X — , VYa>0. (8.14)

Xt0|>a> < Kexp 5/2
teT H €Tdd€

The entropy bound is independent of a so the name of global bound. In some range of applications, it can be sufficient to
have a bound that is valid for a range of a that is limited. Such bounds do not require to refine the covering until that the
radius of the balls that cover T tends to 0. This idea is at the origin of the stopped chaining and of the peeling argument.



Chapter 9

Deviation bounds and peeling device

9.1 A local bound through uniform discretization

In this section we investigate a special case where the discretization given by the chaining technique can be refined. We
assume that the process (X;):we7 is sub-Gaussian and can be discretized uniformly by a set S5 such that

sup inf |X; — X | < 0. (9.1)
teT 5€5s

Under this assumption, one will be able to bound the deviation of order § of the suprema of the process (X);.
The empirical process Going back to the empirical process ((P, — P),)f)er, it is possible to verify the previous

condition using the empirical distance. If we assume that the entropy Hy(d, F, P, — P)) is finite, there exists a covering
of the set F with Cs = (g;); as the set of centers. In this case, the condition is

sup inf |(Po = P,)f = (Po = Po)gil < sup inf |f —gil,p,—p; < 9.
feF 9i€Cs

feF 9i€Cs
In this case we have the following result.

Proposition 29. Let (X;)we1 be a stochastic process on the space T. We assume that there exists a constant V > 0 such
that every random variable X; verifies HXt”Z;p <V fory, :x— e —1 andp >0 . Assume moreover that the condition
(9.1) is verified for a value § > 0. Then, there exists a universal constant K > 0,

5P
P | sup | X¢| = 25) < 2exp (—K) .
(supixi Vi (1S4

Proof. Since the functions v, satisfy in particular the conditions of Proposition 21, the result holds by noticing that

P (sup | X¢| = 26) <P <max|Xs| > 6) )
teT SESs

One can also derive the direct bound that follows from a similar idea as in (7.6) and obtain

5P
P (sup | X¢| > 26) < exp (—K + 1og(S5|)) .
teT Vv
A natural example is the case of empirical processes again where the uniform discretization is given by the centers of the

ball in the empirical covering. The set Ss is the centers of the balls of radius § that cover (for the empirical distance given
by the norm H . HLPn—Pfl) and |85‘ = Nl(E,]:, Pn — P,:L)

9.2 The peeling device
In this section, we assume that the functions in F are such that

sup [ fllo < M.
feF
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The idea behind the peeling device is to cut the set F by levels that have a compared value for a given criteria. More
precisely, we assume given a function 7 : F — [A, R) such that A > 0 and R is any positive real or +c0. Let (m,)5_, be

an increasing sequence of numbers such that my = A and mg = R. In the special case of R = +00, we impose S = 4+

and the condition mg = R takes the form of my — +00 when s — +0c0. We say that (F,)5_; is a peeling of F if

5
— U F
s=1
and Fs = {f € F : ms_1 < 7(f) < ms}. The key point of the peeling idea is the following result.

Lemma 19. Let (X¢)ser be a stochastic process defined on the set of functions F. Then for any a > 0,

X
P sup| Z]P’ sup | X¢| = ams—q | .
fe-FT s=1 feF:r(f)<ms

Proof. The proof consists in a simple break of the supremum.
| Xl Xy
P | sup >a | <P sup sup =Za
(fefT(f) s=1,...8 reF, T(f)
1X¢l
sup Za
;1 (fe]—' 7(f)
X
sup | f‘ =Za
feF, Ms—1

sup | X| = ams—1 |,
s=1 fe]-"r(f)<m9

where we used the definition of the set Fy in the last two inequalities. O

<3
S

The peeling device is particularly useful to control the empirical process deviation using simple bounds as Proposition 29.
The bounds that we derive now take the form of deviation bounds on the ratio sup(P, — P)f/| f|. The following result is
key to detail the assumptions of Donsker theorems that will be studied in the following chapter.

The Rademacher process We detail the peeling device for the process that one has encountered a few times, the
process (vf)fer = (n71 Y, €if(X;)) rer. For this purpose, we use the peeling device for the specific increasing sequence
m?2 —m2 > s and mg > 0 and the criteria function 7(f) = | f|2- Since the process is sub-Gaussian conditionally to the
variables X;, we write that

0 2
P. < >y P > 2amg_ 2 H s_1,F, P,
(Sup > a) Z . ( sup v am 1) 2 exp < 8M2 L o(ams—1 ))

fer s=1 feF:llfla<ms

where we used Hoeffding inequality for the empirical process vy and we used the fact that | f|,, < M. Finally one have
that

0
P, | sup —— < 2exp(Ha(a, F, Pp)) % Z exp(—a*m?n)
feF |\f||2 20

exp(—a®mqn)

< n
2exp(Ha(a, F, P,)) % T~ exp(—aZn)



Chapter 10

Uniform Central Limit Theorems

In this chapter, we derive central limit theorems that will be valid for empirical processes. Those can also be called uniform
central limit theorems. In all this chapter we will be interested in studying the limiting behavior of the process

Zn ={Zn(f) =/n(Pf = Pf): feF}.
We also assume that a specific element fj is of particular interest and define,
F() ={feF: |f—fol <6}

We have to give a precise meaning to the convergence in distribution of the process Z,. In the notions of convergence
given in Chapter 2, we had to have the notion of distance on the space of the values of the random variables. The problem
is similar to the measurability of the supremum of a random process that we faced in the beginning of Chapter 8.

Weak convergence of random processes To speak about weak convergence of the random processes, we first have to
ensure that the object ‘random process’ is an element of a metric space. We successively increase in difficulty/generality
along with the cases below. We denote by Z : f € F — R the random process that associates to any element f € F a real
random number denoted by Z(f). To be able to use distances, we will assume some structure on the realizations (also
called trajectories) of the random process.

1. When the trajectories of the process Z are bounded on F, we can use the supremum norm | - |, defined as
|1Z]oc = sup [Z(f)].
feF
We denote by ¢*(F), the space of functions defined on F that have a finite infinite norm. Obviously, the space
(LP(F), | - |oo) is a metric space.

2. If the space F can be endowed with a measure structure that makes of F, ¥ a measurable space, then one can define
the L,(F) spaces for 1 < p < co. The spaces (L,(F), | -[l,) where the norm is the Lebesgues norm are metric spaces.
Then if the trajectories of the process are elements of a same L, (F), they belong to a metric space.

3. When the trajectories of the process Z are almost surely bounded and the space F is measurable, one can use the
| Z]|essup = inf{C' = 0:|Z| < C almost surely.}

The space of trajectories almost surely bounded is denoted by Lo, (F) and when associated with the norm || - |essup,
it is a metric space.

4. If the space F can be defined as F = | J;-, F; and denote ¢*°((F;);) the space of functions f : F — R such that all
the restrictions f|, are bounded. We also denote by | f|, 0 the values |f|, [«. Then one can define the norm

o0

1£1 = (IF]

i=1

Fooo A1)27Y

that makes the space (¢*°((F;):), | - |) a metric space.
For example, if one takes the spaces F; to be the intervals [—i, ¢], this metric is the metric of the uniform convergence
on every compact of R.
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In the following, we do not detail in which of these context we assume to be in but only represent the underlying metric
space as (D, | - ||). The metric structure allows us to talk about continuous functions and Lipschitz functions on the space
D. For example, a Lipschitz transformation of the process Z is h(Z) where the function h : D — R is such that Va,y € D,
|h(z) = h(y)] < Alz —y].

Definition 11 (Convergence in distribution in D). We say that a sequence of random processes (Z,)n of values in a
metric space (D, | - ||) converges weakly to a random process Z iff for any Lipschitz function h : D — R

E[h(Zn)] = E[h(Z)]. (10.1)
We still denote Z, a), Z for this convergence. Obviously, the notion of convergence is dependent on the topology given

by the metric space (D, || - |)-

This definition imposes in particular that every finite dimensional marginal (Z,,(f1), ..., Z,(fx)) converges in distribution
to the finite dimensional marginal (Z(f1),...,Z(fx))-

Exercice 25. Prove that the last sentence holds true.

For the particular case of empirical processes, we define the notion that replaces the convergence in distribution toward
a Gaussian random variable. We recall that a Gaussian process G on a set T is a collection of random variables
G = (Gy)teT such that for any finite set (¢1,...,¢x) of elements of T, the vector (Gy,, ..., Gy, ) is Gaussian.

Definition 12 (P-Donsker). For a sample X1,...,X,, of common law P, we define the normalized empirical process by
Zn ={Zn(f) =Vn(Pf = Pf): feF}

where F < La(R). We say that the process Z, is P-Donsker if Z, 9D G where G = {G(f): feF} is the unique

centered Gaussian process such that Cov(G(f),G(f")) = Pff' — PfPf’ for any two functions f, f' € F.

The study of the first chapters showed that the convergence in distribution of Z,, cannot occur towards a random process
that would not be a Gaussian process. Indeed, by the TCL theorem (in Theorem 6) any marginals (Z,(f1),..., Zn(fx))
converges in distribution to a Gaussian vector.

10.1 A fundamental Lemma towards P-Donsker classes

We derive a fundamental sufficient condition for a class F to be P-Donsker in the case where the trajectories of the
empirical process are a.s. bounded.

Lemma 20. Let F be a class of functions included in Lo(P) that is totally bounded. Let Z, be a random process such
that a.s. its trajectories belong to Ly (F). We assume that ¥n > 0, 3§ > 0,

limsup P sup | Z,(f1) — Zu(f2)| >n | <. (10.2)
n— 00 f1,f2eF
11 f2l<s

Then the class F is P-Donsker.

Proof. Let § > 0 be fixed. Since the set F is totally bounded, one can find a finite subset Fs of F such that for all f € F,
3fs € Fs such that |f — f5]| < d. Let k = |F5|. Let h : D — R be a Lipschitz function (i.e. Vz,y € D, |h(z) — h(y)| <
M|z — y|lp). We define a function IIs : F — Fs such that Vf, Is(f) is an element of Fs such that ||f — f5] < ¢ (in case of
multiple choices, one just choose one of them arbitrarily). The process Z,, o Il is no more than a random vector of length
k. Indeed, if we denote by fi,..., fi the elements of Fs, then Z, o Il5 can only take the finitely many possible values
Zn(f1,--, Zn(fr). Then there exists a Lipschitz function h: R¥ — R such that

h(Z, o) = h(Z, o Ils).

By the classical TCL theorem on vectors, Z,, o Il ), N(0,X) where Xy, = Pfg— PfPg for all f,g e Fs. Now define a
centered Gaussian process G such that for all f,g e F,

Cov(G(f),G(g)) = Pfg— PfPg
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then G oIl; is a Gaussian vector which have the same distribution has N'(0,Y). Then Z, o Il4 ), G oIls and

E[h(Z, ol5)] = E [E(Zn o Hé)] — E [i}(G o Hé)] — E[h(G o 1I,)]
Now, we show that the condition (10.2) holds also for the process G without the limit in n. Let G be a finite subset of F.
Then by Portmanteau lemma (Lemma 1),

P sup |G(f1) — G(f2)|>n | <liminfP sup | Zn(f1) — Zn(f2)] > 1
f1,f2€G f1,f2€G

I f1—r2l<s [ f1—Ff2ll<é

< liminf P sup |Zn(f1) — Zn(f2)| > 1

f1,f2€F
[ f1—Ff2ll<é

< limsup P sup |Zn(f1) — Zn(f2)| >n | <.
J1,f2€F

I f1—f2ll<s
Since the last inequality is true for any finite set G, it is also true for any G countable. Proceeding as in the proof of
Theorem 19, since F is totally bounded, one can find a countable set G that is dense inside of F. Hence by defining G the
random process on F defined as G(f) = G(f) for any f € G and lim G(f,,) where f, — f € F otherwise. This construct a
a.s. continuous process G that is a modification of G and such that

P| sup |G(f1)—G(f)|>n|<n
\\Qlffzeufé

To conclude the proof by showing that Z,, 1), G.
E[1(Z)] ~ E[h(&)] = (B [(Z0)] = E [1(Zn o Ts)]) + (E[A(Zy 0 TLy)] — E[(G o TLy)]) + (B [A(G o Tly) | — E [0(G) )
But

E[A(Zn)] = E[A(Zn o T5)] | < A+ 2[Rl ([ 2 — Zn 0 Ts|p > 1)

<A+ 2P | sup  [Zn(f1) = Zn(f2)] > n
I
1—fal=

which implies that the term |E [h(Z,)] — E [h(Z, o Is)] | tends to 0 when n — oo by choosing 1 and § close enough to 0.
The exact same argument can be repeated on the last term in the decomposition by using the equicontinuity condition
that we showed on G. The first part of the proof already showed that E [h(Z,, 0 II5)] — E [h(G o Il5)] — 0. This finishes
the proof. O

In facts, the condition (10.2) on a totally bounded set F imposes that the trajectories are a.s. bounded and then belong
to Lo (F). This can be shown by using Borel-Cantelli Lemma and noticing that the process Z,, is trivially bounded on
a finite subset of 7. Lemma 20 only deals with the case of a random process Z,, with trajectories belonging to £ (F).
The ideas can be adapted to the other natural metric space described above. For example, if the trajectories of Z, are
elements of L,(F, F') where F is a probability measure on F, one have to assume that

limsup P f (Zn(f1) — Zn(f2))PdF >n | <.
[ f1—f2ll<6

10.2 P-Donsker theorems

In this section, we derive a theorem under a condition of a control of the empirical entropy over the class F.

Theorem 26. We assume that (F,| - ||) < La(P) have a enveloppe F € Lo(P) and that there exists a non-decreasing
function H such that
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1. §2A/H(8)dd < oo.
. . H3(5,F,Pp) _
2. f}gnoo limsupP (sup5>o ZI'IW > A) =0.
Then, for all n > 0, there exists § > 0 such that
lim sup P sup  |Zn(f1) = Zn(f2)| > n | <.

n—0o f1,f2eF
I f1—F2ll<s

Proof. We define the events As = {sups,_f,|<s |Zn(f1) — Zn(f2)| > n} and E, 4 = {sups-, Mfl’ffé’)]m > A}. Then

P(As) =E[14,1p, | +E [L,& ]lE,:,A]

E [Suprlff2H<5 Zn(f1) — Zn(f2)|]1EZYA]
n
E [Suprlffzﬂéé | Zn(f1 — f2)|]1E;:A]

§P(En,4)+

s

= P(En,,q) +

7
0 \/H(e, G, Py)de 1E;‘A]

|
<P(Ep4)+ 24
n

where G = {g = f1 — fa: f1,f2 € F and ||g| < d} and 6, = supyeg |g]n2- First of all, a covering of F by balls of radius
€ gives directly a covering of G by balls of radius 2¢. Indeed, if we denote by fi,..., fx the centers for a covering of F,
then the functions g; ; = f; — f; define the centers a covering for G where the radius has to be multiplied by 2. Then
H,(2¢,G, P,) < 2Hs (e, F, P,). We are now ready to apply theorem 18 to the empirical process (|f — f'[|2 5) s, per. For
any x, (f — f')*(z) < 2F(2)(f — f')(x) so that | f — f'||2 5 < 2|F|nz2]|f — f'|n,2- By the convergence given by the law of
large numbers ||, 2 =% |F|2 we have that for n large enough, Vf, f' € F,

If =

2 <A[F|aff = F

n,2-

Let
H={(f-f):ffeF}
So we have that

€ £
T 9 Pa) < 2Ha (G
A F 8]l

But the enveloppe of the class H is @ — supy, ;, (f1 — f2)?(z) < 4F?(x) is in L;(P) and then

Hy(e, H, P,) < Ha( F, P).

sup [ f1 - fo

1,J2

5 — |1 = Fal3] =50
so that for n large enough, for every fi, fo € F,

%Hfl — f2

lo.n < |If1 — fa2 < 2| f1 — fo

2,n

and then for n large enough, Ho(2¢, F, P) < Ha(e, F, P,) which implies that F is totally bounded. The same result also
implies that 6,, < 24, for all n large enough. Finally,

[ H2(57‘Fa P7L)d5 ]]-E;A]
P(As) < P(Ena) +48V2 . LS P(E,4) +48V2

E|fo v/H(e)de |
n

We conclude the proof by taking n — o0, A — o0 and § — 0. O



Chapter 11

Birman and Solomjak theory

In this chapter, we derive the calculation leading to concrete calculations on the entropy of various sets of functions with
enough regularity. The good set up for this study is the functional space W*(R™) that hold for Sobolev spaces. This
theory is taken from the seminal paper [1].

11.1 Notations and definitions

11.1.1 Functional space W(A) and V5(A)

Let @™ be the m-dimensional half-open unit cube in R™ (i.e. 0 < z; < 1,i=1,...,m). We denote by k = (k1,...,kn)
a multi-index (Vi, k; is an non-negative integer), =¥ = [/~ a¥ and |k| = Y k;. We denote by D¥ the corresponding
diferencial operator given by

oIkl

Dfk—- -
orkt . oxkm
NG s

For a cube A with edges parallel to the coordinate axes, p > 1, a > 0 we denote by W;(A) the Sobolev space endowed
with its natural norm | - e (a). We recall that for § = a — |a] and uw e W' (A),

HUHW;(A) = |ulz,a) + ||UHL;;(A)

where
- ko P
luliga) = Y [ 10"l
|k|=a VA
The semi-norm | - || Lg(A) has a homogeneity property with respect to linear transformation of the cube. For example, if

one takes A = xy + h@Q™, then
1

lullzgay = B2 ) g (. (11.1)

In the one dimensional case (A is then an interval), we will use the notion of function of bounded S-variation denoted by
Vs(A). Let 8 = 1. We say that u € V3(A), if

”“”ffg(m = sup Z u(z;) — w(zi_1)]?
=1

is finite. The suprema is taken over all the possible finite sets of points xg < 1 < -+ < x,, in the interval A. Of course,
the set V3(A) is a Banach space relatively to the norm

HUHVﬁ(A) = HUHVﬁ?(A) + sup |u(z)|.
TeA

11.1.2 Partitions A

In this section we consider partition of the cube Q™ where the elements are also m-dimensional cubes, generally denoted
by A. We denote by |A| the number of cubes in this partition and A = {A,..., Az}, A elementary extension of the
partition A is a partition A’ obtained by dividing some cubes in A into 2™ smaller cubes (by slicing in every dimension).
The notation Ag holds for the trivial partition.
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Cube argument functions We define a non-negative function J on the half open cubes A that is semiadditive from
below: For any partition of A into smaller cubes Aj,

DI < J(A).

Let |A] be the Euclidean volume of the cube A and let a > 0. We define
o (J, A) = |A|*T(A)
and the following function of a partition A

Ga(']a A) = rggl)\(ga(*]a A)

Slicing strategy One wants to track the minimal value of G, given that the partitions considered have at most a certain
number of elements. In other words, one is looking to

Minimize A w— G,(J,A) (11.2)

where |A] <n.

One employs a strategy of successive divisions. The first step is to divide Q™ into 2" cubes and call A; the partition
obtained. Assuming the partition A; already constructed, we slice the cubes A for which g, (J, A) is such that

9a(J, A) = 279Gy (J, Ay) (11.3)

into 2™ smaller cubes. This constructs a sequence T, (J) = (A;);en of partitions such that A;;; is an elementary extension
of Az

11.1.3 Two elementary lemmas

Lemma 21. Suppose that a cube A in Q™ is divided into cubes Aj; for j =1,...,2™. Then

max gq(J, A;) <27, (J, A)
J

Proof. By the semiadditivity from below, we have that >}, J(A;) < J(A). But for all j, [A;|* = [A[*27™ and then the
maximum being upper bounded by the sum, we get the result. O

Lemma 22. Let se N and let ; >0, y; >0 (j =1,...,5) be numbers such that

Eitjé]., Zyjél, xjy;-’>b (j:17~~~7s)'
J J

for some a >0 and b> 0. Then b < s~ (@+1),

Proof. This is a classical optimization problem that one can tackle with Lagrange multipliers. Indeed, we look for maxb
satisfying the conditions of the lemma. Then one has to find the unique critical point of

b (). (Y5)5: (Nj)j o B — b+ Z)\j(xjy? —b) +a(l - ij) +B(1— Zyj)

One has to verify the 3s + 3 equations

Zj LUj =1 (Ll) ‘ij?*bZO (lej)
259 =1 (L) , Ajy;—alzo (Laj)  (j=1,...,5).
2N =1 (Ls) aXjzzy; —B=0 (Ls;)

For example from (L; ;), (L2 ;) we get that A\;b = az; and then b = « together with A\; = z;. In the same way, we get
that A\; = y;. Consequently, the sequences (x;);, (y;); and ()\;); are stationary so that Vj,z; = y; = \; = s~!. It gives
maxb = s~ (@t and the result follows. O
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11.2 A fundamental theorem for partitioning cubes

11.2.1 The decreasing behavior of G,

In this section, we investigate the effect of the Slicing strategy over the decreasing behavior of the functional G,. Since
the slicing is performed on all the cubes of ‘large’ weight for G, we expect to see a decreasing effect on the G, along the
successive refinement of the partitions. A precise statement is as follows. For this purpose, we define the quantities

Vi =0, n; = |A
on which can directly see that ng = 1 and
Ni4+1 < ani.

We define
Si:{je{l,...,ni} Zga(J,Aj) 22—ma6i} and s; = ‘Sz|

for the cubes that are sliced (or equivalently that satisfy (11.3)) at step ¢ to obtain the partition A; 1.

Lemma 23. We have the relation for any i > 1,
i—1
n; < 2m Z Sj.
j=0

Proof. When a cube is sliced, then one cube disappear and 2™ cubes are created. Since we do it for s; cubes, we get
nir1 —n; = (2™ — 1)s;. Summing this last equality gives the result. O

Theorem 27. Let a > 0. Assume that the function J is semiadditive from below. Then there exists a constant C* =
C*(a,m) (that do not depend on J) such that for all i > 1,

Go(J,A;) < C*n; @tD), (11.4)

In particular, for Cy = Cy(a,m) = 2™ @tV C* then for all n € N*, there exists a partition A of the cube Q™ of size |A| < n
and such that
Ga(J,A) < Cin~ @D 7 (Q™).

Proof. The second part on the theorem is a direct consequence of (11.4) so we only have to prove (11.4). For simplicity
of the notations, we note §; = G,(J, A;) in the following. The partition strategy and the quantitative result in Lemma 21
show that Vi > 0,

Gir1 < 2744, (11.5)

But using Lemma 22 for the quantities z; = J(A;), y; = |A;| over the class of cubes corresponding to .S; and b = 27™%¢;,
we get

5; < 2mag (et (11.6)

K2

Equations (11.5) and (11.6) together show that for any k > 1,

S < 2—(k—i—1)ma8;(a+1)

or again
s; < 5;(a+1)*1 « 9—(k—i—l)ma(a+1)~"
Summing those relations over i € {0,...,k — 1} and denoting ¢ = 2*’”“(‘”1)_1, we have
= ot kel N 5@t
ng < 2™ ; 8 < 2’"6,;(‘“r ) igo ¢ < 27"5;(‘”' ) ;Jql - 2mklfq

—1

Then 6, < (27/(1 — q))~(*+D) x n,:(aﬂ) which gives the result for the constant C' = (2™/(1 — 2~ male+)™))=(a+1) ]
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11.2.2 The one dimensional case

In this section, we see that Theorem 27 to the one dimensional case. The change is that a is allowed to take the value
0 in this case. We denote by I = [0,1) and for any z,y € [0,1) such that < y and denote the semiadditive function
J taken on the half open intervals by J[z,y). By the semiadditive property, we see that the function ¢(t) — J[t,y) is
non-increasing on (z,y) and bounded. We define

~

Jz,y) = lim ¢(t).

t—xt
This definition implies that J[z,y) < J[z,y).
Theorem 28. Assume that the function J is non-negative, semiadditive from below and continuous on the left which is

lim J[z,t) = J[z,y).
t—y—

Then, for any a = 0 and any n € N, there exists a partition A of the interval with |A| < n and
Ga(J,A) <n~ @+ J[0,1). (11.7)

Proof. We prove that theorem directly by induction on n. Without loss of generality, we assume that J[0,1) = 1. The
case n = 1 is direct. We now assume that (11.7) is verified for a certain n > 1. Using (11.7) is true for

J/ A J(JL‘QA)/J[O,ZEQ),
we see that if the basis interval is [0, o) then we get that
Go(J,A) < n~@FDga [0, 20).

So define the function ¢(x) = J[0,z) so that the function

xHam<’l>H2a

n+1

as the sum of two non-decreasing functions is also non-decreasing. But since the limit at 0 of this function is —o0 if @ > 0
or —n/(n+1) if @ = 0 and is positive at z = 1 then the function changes sign at some value in (0,1). By the left continuity
of the function ¢, there exists a point zp € (0, 1) such that

a+1
B(wo) < ( z > 20" < lim ¢(x).

But then, by the induction hypothesis, we can divide [0, z() into subintervals Ay, ..., Ax with k < n such that

max go(J,A) <n” V(o) < (n+ 1)
By the fact that k < n, we have the freedom to add one more subset to the family Ay, ..., Ay to form a partition of [0, 1).
Logically, we define Agy; = [20,1) and we have to prove that g,(J,Ary1) < (n + 1)~ to finish the proof. Since
o(x) + J(Agy1) < 1, we have by taking the limit

lim ¢(z) + J(App1) < 1.

vz}

So

a+1
I €1 tm o) < 1= (20) ag® < (0 e

z—z n+1

where the last inequality is a simple analytic fact that is let as an exercise in Exercice 26 below. So we have proved that
0a(T, As1) = (1 = 20) ™" J(Agy1) < (n + 1)+

and the proof is finished. O

Exercice 26. Finish the proof of Theorem 28 by showing that for every xq € (0,1), n € N and a = 0, it holds that

a+1
n —a _ _
1-— (n+1> 25" < (n+1)"@FD (1 — )7

Hint: Use the auziliary function h(z) = (1 —x)~% 4 no¢+lg=a,
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11.3 Approximation of functions in Wpo‘(Qm)

In this section, we justify why the polynomial functions are good candidates to approximate functions in W;*(Q™) (hence
to be the center of balls in the entropy definitions). We use the fact that Sobolev spaces have a underlying Hilbert structure
given by the scalar product

U,V > u(z)v(z)dz.
Qm

Obviously, this quantity can be infinite and this formula does not define a proper scalar product. Nevertheless, if one
takes v in Ly (Q™), then the scalar product of u e W (Q™) and v is well defined. The class of polynomials do belong to

Ly (Q™) and the projection Pyu of u on the linear space formed by the polynomial functions (:E’)Msk = (:cll1 .. .:cﬁ;p)|i|<k
is uniquely defined by the equations

J z' Pou(z)dx = f rhu(x)dr, V|| < k. (11.8)

When the cube Q™ is replaced by any general cube A = R™, we denote P2 the corresponding operator. For a partition
A of the cube @™, we denote by P, j the function such that any restriction to a cube A € A is equal to the polynomial
P,CA. The regularity of the functions inside W;‘(Qm) is very dependent on the relative values of p, @ and m as pointed out
by Theorem 37. We derive two different results of polynomial approximation depending on the case of regularity.

Proposition 30. Let u € W' such that pa/m > 1 and let n € N. Then, there exists a partition A of the cube with |A] <n
and such that

lu = Pa—rulr, < Cn™m|ufwg
where the constant C' only depends on o, p and m.

The proof is based on the following lemma that is based on the embedding theorem of Sobolev spaces that is recalled in
Corollary 14.

Lemma 24. Let A be a cube in R™ and let ue W(A). Then
o 1
lu = Pyl a) < CIA™ 7 |ufLg(a) (11.9)
Proof. First of all, we consider the alternative Sobolev norm (see Section 19.1.3) given by
lullwe ay = IPayuls,_y + lulzgca)-
Since the linear projector P2 | is a projector, we have that P52 | (u— P2 ju) = 0 so that lullLs(a) = |Hu—PaA_1u|HW;(A) =

lluflwe(a)- But by Proposition 40, this norm is equivalent to the regular norm |ufwe(a) which implies that there exists
constants ¢ and C' such that

A
clulweay < lu = Pityulwe(a) < Clullwe (a)-
Then, it is enough to prove that for any element of u € W *(A),
o 1
lullL.cay < CIAP "7 ullLa(a)-
Let start with the canonical cube Q™. By Corollary 14, there exists a constant C such that
lullL,@m) < Clulrs(@m)

For a general cube A = 2o + hQ™, we define the function v(x) = w(h™*(z — z)). The homogeneity relation (11.1) and
the fact that the side & of the cube A of volume |A| is h = |A|Y/™ shows that

lulz.a) = IvlL.o@m) < ClvlLg@m) = C(\A|_W)%_QHUHL5(A)
which finishes the proof. O

In the next result, we show how the partition scheme is adapted to the approximation of a function in W;(Qm). The idea
is to follow the principles of Section 11.2.
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Proof of Proposition 30. Let A be a partition of the cube Q™ and we denote by v = P o—ju. For a x € Q™, there exists
a cube A € A such that 2 € A. In this cube the norm |u — v, (a) is controlled by Lemma 24 and we deduce that
1

Ul )

sup |u(z) —v(z)| < C (|A

TEA g(A))

To finishes the proof we use Theorem 27 to pass from a local control (over each A) to a global control of the supremum.
The quantity to control is then
2E—1,,P —- o
Igg/)\dA' HUH g(A) - G%(‘LA)

where we choose J(A) = Hqug(A). This function is additive by the additivity of the integral. Theorem 27 applies and we

get that there exists a partition of size |A| < n such that

Gz (J,4) < Cn™ % Jul g o)

Whlch giVeS that Hu — UHLOO(QNL) < C'I’L—% HUHL;(Qm) < Cn_% ||U||W;(Qm) D
The general case of uniform approximation by polynomials is the following result.

Theorem 29. Assume that p,a,m are such that pa/m > 1. Let u be a borelian measure on the cube Q™ such that
w(Q™) <1 and we denote by L,(Q™, 1) the Lebesgue spaces associated with the measure p. Let n € N*. Then there exists
a partition A of the cube such that |A| < n such that for every ue W (Q™), we have

_ a1 1 .
4= Pracstliygny < Cn~ 55 Flulws  ifp<a,
and
— & .
lu = Pra—1u|z,@mu < Cn~mulwe  ifp=gq.

The constants only depend on p,q,a and m.

One can note that the exponent in n acquires an extra term 1/p that comes from that the partition construction does not
depend on the form of u. The term = — % is the same as in the embedding theorem and is the good estimate. The result
of Proposition 30 is better since the partition scheme is adapted to the specific function .

Proof. We show the results for every ¢ > p since the case ¢ < p follows immediately from the case p = ¢ with Holder’s
inequality. We proceed as in the proof of Proposition 30. Let A be a partition of the cube and denote v = Py o1 then

o 1
= 0l gy < 25 suplu = 0l(A) < € 3 1AL Dulf 5 n(A)

Ach AeA
S TN PRSESTE)
AeA
D o
<C (AZA ||U||pg(A)> rilea‘/)\i (|A (3% p)qM(A))
€

(a 1

R4

= CHUH%S(Qm) IES})\( (lA

But maxaea \A\(%_%)qu(A) can be bounded using Theorem 27 with a = (a/m — 1/p)q and J(A) = p(A). Since the
function J does not depend on u, the partition is adapted to p and works uniformly over all choices of u. The exponent
in n is then given by —(a + 1)/q = —(a/m — 1/p) — 1/q. O

11.4 Entropy control

The approximation of each element of W' by piecewise polynomial is the key ingredient to cover a bounded subset of
Wy, Indeed, the set of polynomial has finite dimension and can be included inside the Euclidean set of its coefficients.
However, considering all the possible polynomials Py ,—1 as the center of the balls in the covering lead to poor estimates.
In the following we refine the argument by splitting the set of interest in sets such that the corresponding partition in
the construction of the polynomials are equal up to some step. For that purpose, we first count the number of distinct
partitions that the process described in Section 11.2.
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11.4.1 Counting the partitions of the cube

In this section, we show how the partition can be regrouped in a way that the polynomials constructed later on those
partitions be alike. For a sequence of partitions (A;); that are successive extensions, we define the

51' = Ga(J, Al) and n; = ‘A1|

We have seen in the proof of Theorem 27, that for the partitions constructed in Section 11.2 we have that d;1 < 27™%§;.
The first step is to regularize the sequence §; so that its decreasing speed is of the order 8,1 ~ 2745,

Lemma 25. Define for all i the sequence

5; = C* min {27 am(i— j)n (aH)}
o<yt

where C* is the constant of Theorem 27. Then it holds that Vi € N,
2—m(a+1)5i < Si+1 < 2—ma8i and 6; < 51 (11.10)
Proof. By Theorem 27, §; < C*n 7(‘”1) But since we have that &;11 < 27™%5;, we have that Vj < i, §; < 279m(=9)5,.

This gives that for all j <4, §; < 0*2 am(i—j) (aH and so §; < &;. Also, for all 4,

Jiv1 = min{279"5,, C*n, 0ty (11.11)

so that we have immediately that 5i+1 < Q*m“&. For the other side, it is direct to see that 2””(‘”1)&- < 2*‘””& and

then it remains to prove that o-mlatl)§, < C’*ni_ﬁﬂ). Since the successive elements in the partitions (A;); are obtained
by extensions, we have that n;1; < 2"™n;. Then,

92— m(a+1) 6 <92 m(a+1)5 < C*9~ m(a+1) —(a+1 < C*n —(a+1)

N1
O
We fix a number 0 < n < C*. For a semi-additive function J, we define the associated partition sequence (A;)i—o,... x such
that - -
O0p << k1. (11.12)

We denote by L£7(.J) this sequence. If we denote J the set of all functions semiadditive from below with J(Q™) < 1, for
two elements J, J' € J, we define an equivalence relation

I~ T e £1() = £I(T)

The following result upper bounds the number of different classes for the relation R.

Lemma 26. Let N,(n) the number of classes of equivalence given by relation R. Then there exists a constant C only
depending on a and m such that
-1
logy Ny () < Cy~(*+)

Proof. Let (A;)io,...» = L1(J) be a sequence of partition that correspond to at least one funcion J € J. Then

ng < 2mnk71 < Qm(c*glzil)(a+l)*1 <. 2m<C*n—1)(a+1)71.
(11.11) (11.12)

If we denote by N = [Qm(C*nfl)(‘”l)_lJ, we know that the final number of cubes ny < N for all J. By decomposing N,
we have the following decomposition

i —Ni—1) + (N —nyg)

||
II'Mw

of the integer N in a sum of non-zero integers except for the term (N — ny) this allowed to take the value 0. But the
number of decomposition of an integer N — 1 in positive integers is given by 2¥=2 x 2 (in our context, if the order of the
sequence of integers differ, the decomposition is considered different). [GIVE A SIMPLE PROOF IN THE APPENDIX]
We, now fix a certain sequence of integers (n;);—o,...x such that n; < N. We have to find all the possible sequences
(Ai)izo,...k with |A;| = n;. Given A;, the following partition is completely determined by the set of all cubes A that are
to be split at step i + 1 which is exactly the set S; of cardinality s; = (n;41 — n;)(2™ — 1)1, Then, the numbers s; are
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fixed. The possible choices of the set S; is (Z“) < 2™, Then, the total number of partitions corresponding to the sequence

(ni)i=o,... k is upper bounded by
2no+n1+~-~+nkf1.

It remains to bound the sum ng + ny + -+ - + ni_1 with respect to the precision parameter 7. By definition of the S in
Lemma 25, we have that

Vi<k-—1, n; < (0*51;11)(&“)’12—(k—1—i)am(a+1)*1 < (O*n—1)(a+1)*12—(k—1—¢)am(a+1)*1.

Summing the previous inequality on i, we have that, for a constant C' that only depends on a and m,

—1

ng+mny+---+np_1 < O’f]i<a+1)

2N—1

The total number A, (n) of classes is then upper bounded by the product of the cases for the choice of the sequence

(n;); and the Cn_(““)fl cases for the choice of the partitions sequence for a given sequence of numbers n;. This gives

-1

logy No(n) < N —1 + C,r]f(aJrl)*1 < 2m(c*,’771)(a+1)’1 + C«,nf(aJrl)*1 < Cln—(a+1)

where the constant is only depending on a and m. O

11.4.2 A general upper bound for the entropy in Sobolev spaces

In this section, we use all the machinery developed in the previous sections to handle upper bound the entropy of any
bounded set F inside W,*. As expected by the path taken so far, the main idea is to restrict the calculation of the entropy
of F to the entropy of piecewise polynomials.

Theorem 30 (Birman-Solomjak (1967)). Let F be a class of functions included in W (Q™) that is bounded. We have
that for a constant that only depends on q,m and «,

m

H(e, F,| - |p,@m) <Ce =« (11.13)

where 1 < g < oo in the case pa/m > 1 and 1 < g < ¢* when pa/m <1 for ¢* = p/(1 — pa/m).



Chapter 12

M-estimation

The M-estimation (M for maximum) is a commonly used technique in statistics to define estimators of the “best” kind for
a given problem. They are based on the minimization of some random criteria that measures the desired quality of the
estimation.

12.1 Introduction and notations

Let Xq,...,X,,X beii.d. random variables taking values in a set X of common distribution P. Let S denote the set of
parameters. In this chapter, S is assumed to be a subset of a metric set, so that it is possible to enroll S with a distance
d. A random criteria is a function

Yn: S = RY
t— ’Yn(t) = ’yn(Xla s 7Xnat)

depending on the random variables Xi,..., X,,.

Settings and M-estimator Once given the criteria +,, one is interested in finding one parameter s € S that have the
best theoretical cost E[v,(s)]. The purpose of M-estimation is exactly to define a random point that we hope to be close.

Definition 13. We define the following notions.

1. Let s be the target parameter defined as
s € argmin,. s E [v,(¢)] .

2. We define the M-estimator based on the risk function as
§ € argming g Yn (t).
3. The cost of choosing the parameter t is given by
R(t) = E[va(t)]
and the risk of the estimator is the quantity R(S).
It has to be stated somewhere that a M-estimator § is, obviously, depending on the set of parameters S and of the form

of the random criteria vy,

Empirical Measure Most of the time, the criteria 7, (¢) can be rewritten in the setting of empirical processes where a
sum of independent terms is considered. For any measure y and any function f : X — R integrable with respect to u, we
define

wf = p(f) = L fdp.
Obviously, for any function f : X — R integrable with respect to P, we have

Py =E[/(X)]
Paf =+ 3 F(X)

where P, = L 3" | 6y, is called the empirical measure.

83
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12.2 Examples

In the following examples, we remark that the random criteria 7, () takes the specific form P, f; for a good choice of f;.

Empirical mean and empirical median Estimating the mean and the median of a sample of random vectors taking
values in a set X = R¥ can be seen as a problem of M-estimation. The parameters are also elements of R¥ then we set
S = RF.

e When v, (t) = P, f; where f;(z) = (y — t)?, the target parameter s is simply the expected value E [X].

e When ones uses fi(z) = |y — t|, the minimizer is just the (a) median of X.

Exercice 27. Show that the minimum of E[(Y — t)?] is attained for t = E[Y] and show that E[|Y —t[] is attained for
t = Med(Y).

Least square regression In this context, we assume that the space X takes the form X = Z x R for a measurable
space Z and that X = (Z,Y) € Z x R of law P and such that

Y =m(Z)+o(2)e,

with E[Y?] < c and o(Z) > 0. The noise term ¢ is suppose to be independent of Z and standardized (i.e. E[¢] = 0 and
E[e?] = 1).

e The set of parameters is S = Ly(P) := {s: Z > R ; E[s*(Z)] < o0}.
e The cost function is v, (t) = P, f; where f;(z) = (y — t(2))2.
e The target m: z — E[Y|Z = 2] is called the regression function of Y by Z.

The estimator § is the least square estimator (LSE).

Binary classification The binary classification deals with the problem of labeling a random variable Z by a number 0
or 1. The data points are, then, of the form X; = (Z;,Y;) where Z; € Z and Y; € {0,1}. Then X = Z x {0,1} and,

e The set of parameters is S = {s : X — {0, 1} measurable}.
e The cost function is 7, (t) = P, f; where fi(z) = 1242
e The target s4(2) = lg[y|z=2]>1/2 is called Bayes classifier.

The estimator § is the binary classifier.

Maximum likelihood We assume that X has a density f with respect to a measure p,

_dp
a

f
and that (log f)+ is integrable with respect to P. Then:
e The set of parameters is S = {s: X - R ; §, sdu =1 and P(logs), < o©}.
e The cost function is 7, (t) = P, f; where f;(z) = —log(s(x)).
e The target f is the density of X.

The estimator § is then the maximum likelihood estimator (MLE).
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Figure 12.1: An example of MLE done by hands.

12.3 Theoretical study

For simplicity, we derive the following study in the context seen above, where the cost function ~,(¢) takes the form of
P, f;. The choice of the form of the function f; depends on the statistical context. Hence the theoretical cost E [, (¢)]
takes the form Pf;. When one wants to study the deviation between the target s defined as the minimizer of Pf; and
the M-estimator § defined as the minimizer of P, f;, it is a good idea to control the difference P, f; — P f;. This enters
naturally in the context of empirical process theory.

Definition 14. Let F be a subset of L1(P). The functional
¢: F—-R
[ Puf—Pf
also denoted ((P, — P)f)jer is called the empirical process over the class F.

This point of view is the one taken by numerous authors for a general study of M-estimators on metric sets of parameters.
The interested reader is advised to take a look at [16], [L7] or [L0].

12.3.1 Consistency of M-estimators

Bounding the excess risk As defined earlier, the quality of the M-estimator is measured by its risk R(§). A first step
to prove the consistency of the estimator § is to control the so-called excess risk

R(8) — R(s).

The convergence towards 0 of R(§) — R(s) is not directly linked to the convergence of § towards s. Indeed, if the function
R has numerous local minimum then tracking the convergence of § becomes hard even though one has R(8) — R(s) — 0 as
n — 400. In the literature, many author do not bridge this step and only look for the asymptotic behavior of the excess
risk of the estimator. If one wants to overcome this issue, several leads are possible. The most common one may be to
assume convexity or strong convexity.

Definition 15 (Strong convexity). Let u > 0, U be a convex open subset of R* and f : U < R¥ — R be a differentiable
function. We say that a function is p-strongly convez if one of the following equivalent conditions is verified.

1 f(y) = f(2) + V@) (y —2) + §lz —y[?* for any 2,y € U.

2. The function g(x) = f(x) — &||z|? is convea.

3. (Vf(@) = Vi) (@ —y) = ule —yl.

Exercice 28. Prove the equivalences in Definition 15.
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The equivalences in Definition 15 still hold when f is assumed to have sub-gradients. See the details in [3, Section 9.1.2].
The other option is to assume that for a distance d defined on the set S of parameters, we have

nd(t,s)? < R(t) — R(s), VteS

for a positive constant 7. The power 2 in the previous inequality is arbitrary but is often chosen in the literature. In the
sequel, we do not comment more on this fact and focus on proving consistency results only for the excess risk R($) — R(s).
The following lemma encodes a crucial decomposition of the risk.

Lemma 27. Let Vt € S, R, (t) = vn(t) and assume that is satisfies

P

sup |R,(t) — R(t)] — 0,
teS
then R(8) — R(s) — 0.
Proof. We have
0 < R(8) — R(s)
= [R(3) = Bn(5)] + [Rn(8) — Rn(s)] + [Rn(s) — R(s)]
< [R(8) = Rn(3)] + [Rn(s) — R(s)]
< 2sup|Ra(t) — R(t)| = 0



Chapter 13

Model Selection

We are in the context when the quantity to estimate is some complex object such a graph, a function, etc... If we take the
case of density estimation as a generic example for the context, one has to determine a objective function inside a possibly
enormous set of functions (think to all continuous function from R to [0, 1] for example). Hence, a natural strategy is to
reduce the set of possible solution at the price of possibly deteriorating the quality of the estimation. We put it in context
in the following. This chapter is inspired from the thesis of Adrien Saumard [12].

13.1 Introduction

Let Xi,...,X, beii.d random variables taking values in a set X. Let S be a set (possibly very complex) of parameters
(DEFINE this). We also define a random criteria -y,, sometimes referred as contrast as a function of the data for measuring
the quality (DEFINE that) of a parameter ¢t € S. More concretely, let

Yn: S = RE
t’_)’yn(t) = A/n(Xla"'vXnat)

be the cost (or risk) function. In many cases, the cost function takes the form of a sum of independent random quantities
Yn(t) = n~t >, e(X;, t) in such a way that v, (t) can be rewritten in the context of empirical processes theory v, (t) (see
Definition REF). We, now, introduce the important vocabulary in the setting of model selection.

Definition 16. We define the following notions.
1. The empirical cost for a parameter t € S is v,(t).
2. The cost or risk is E [v,(t)].

3. A subset S < S is called a model. When one has access to a class of such subsets (Sp)mer, we also call model the
index m of the model S,,.

4. Let s be the target parameter defined as
s € argming g E [y, ()]

It is the theoretical benchmark for the problem of optimizing the cost. For each model m € M we define the projected
target as a minimizer of the cost on the model S,,,

Sm € argmingg K[y, (t)].
5. For each model m, we define the associated M-estimator based on the risk function as
8, € argming.g Y (t).
6. Finally, among the models M we choose the optimal model for which the cost of its M-estimator is minimal,
My € argmin, e pq E [0 (8m)] (13.1)

Question: If one have access to a class of models (S, )mer, how can one choose a model m and an estimator § as an
element of the model 5,, such that it is a good estimator of s?
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Selecting among M-estimators In the definitions 5. and 6., we reduced the diversity of estimator we consider.
Indeed, we only assume that we construct a M-estimator corresponding to each model S,,. As a result, the estimator §
is to be chosen among the family (§,,)mer as we will develop further in the following.

Target model The model my or S,,, give an associated estimator 3,,, having the best theoretical performance (in
the sense of (13.1)) among the class of M-estimators (8,,)mear. In that sense, s, is the best estimator to estimate the
target s. However, it is not rigorously an estimator since it still depends on some parameter of the problem through m..
This comes from that the minimization in (13.1) uses the true mean operator.

Avoiding a confusion : E,[-] versus E[-] In the following, we will have to distinguish between two kind of alea.
The empirical cost is one source of randomness and an estimator in some model M gives another source. We attract the
attention of the reader on the fact that as a function of a (non-random) parameter ¢, E[v,(t)] =: E, [v,(t)] is no more
random. Then, when one considers a estimator §,,,
E, [vn(5m)] is a random variable
E [vn(8m)] is a deterministic number
since the second quantity is simply the expected value of the random variable v, (3,,). The reader has to be careful that

we do not have E [E, [v,(5m)]] = E[vn(5m)] but we obviously have that E., [y, (t)] = E [v,(t)] for any deterministic point
teS.

Loss functions In order to quantify the goodness of an estimator, one has to define a non-negative quantity that
quantifies the gap between an estimated parameter and s. In the literature, there are two natural and common choices.
We define the deterministic loss function £4.; of an estimator § around the target point s by

Cact(5,5) = E[v(5)] = E[vn(s)]-
We define the random loss function 4,.., as

lran(8,8) = Eq [10(8)] — E[ya(s)]-
In each section, we specify which loss is considered and we will use the generic notation ¢ for both cases since there will
not be confusion. Note that, for both cases, the projected target s,, is a minimizer on S,, of £(¢,s). At this point, it is
clear that a model S, too “small” is not likely to embed properly the problem as the target s will be far from its closest
point in S, and then one has to look for a rich enough model to hope to get a good estimator § of the target.
Over-fitting At first sight, the question seems to be answered by a direct minimization of the empirical cost by

m € argmin,,c pq Yn(S$m) (13.2)

which will have the tendency to always choose the biggest (in the sense of inclusion) model S, among the possibilities.
However, a “big” model have the tendency to suffer a negative bias. Indeed, calling 7, (t) = 7, (t) — E4 [, (¢)] and using

]EV ['Vn(émn = EW ['Yn<sm)] + Ev ['Yn(gm

~

— Yn(sm)]

WV

where the operator E, only operates on v, and not on §,,, and

Yn(8m) = Yn(sm) — (Yn(sm) — ’Yn(ém)z

N

=0

one can write ¥,,(5m) = ¥,,(Sm) — (T (Sm) — ¥, (8m)). Since the point s, is not random, 7,,(sy,) is centered (or without
bias). Nevertheless, the term 7¥,,(s,,) — 7,,(5mm) is non-negative and then

E[7,(3n)] <0. (13.3)

This can be interpreted as the fact that the minimization in (13.2) introduces a negative bias so that v,(5,,) is too
small compared to its cost E[v,(5,,)]. This occurs in the over-fitting phenomena using a model with too much de-
tails/parameters.

Practice 1. BUILD AN EXAMPLE TO COMPUTE OVERFITTING

Hence the term that control the bias of the over-fitted estimator is 7,,(sm) — 7,,(8m). This bias is controlled by the
complexity (the richer the more complex), of the model m chosen to build the estimator.
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Values = Values .

Time Time

Underfitted Good Fit/Robust Overfitted

Figure 13.1: A typical problem of underspecified (left) vs adapted (center) vs over-fitting (right)

13.1.1 A solution through penalization

A solution to overcome the issue of over-fitting (negative bias) is to correct the estimator by a slightly modified minimization
by adding a term of penalization of a model.

Definition 17. A penalization on the class of models (Sy)mem is a function pen : M — R,. We allow pen(m) to be a
random variable depending on the data X1,...,X,.

The new estimator is then defined as a minimPseizer of
m € argmin,,c v {7n(8m) + pen(m)}. (13.4)

For clarity in the notations, from now on, we denote by § the selected estimator using (13.4) estimator .

Ideal penalizations

We define the ideal penalizations

penziidet(m) =K [7n(§m)] - ’Yn(ém) (135)
pen's,, (m) = Ey [ (5m)] — Y ($m) = =7 (3m)- (13.6)

In practice, pen'd cannot be used to tune the estimator since it depends on theoretical quantities such that the true mean
of ¥, (8m). Assume for a second that we choose pen = peni{ét, then it is clear that m = my and this choice would achieve
the prefect estimator 5,,, .

13.1.2 A good class of results: Oracle bounds

The purpose of this section is to define properly the form of the results that one may want to develop. One is usually
interested in proving that the estimator in question satisfy the same kind of guaranties than the best estimator provided
in the class (Sp)mem. We will give at least two different mathematical meaning of this sentence. Since the calculations
on Lrqn and fge; are similar, we will give a unified notation ¢ for both loss functions and denote by E [-] the associated
expectation that is either [E or E, depending on the case.

Oracle bounds We will be looking for bounds of the form

0(5,s) < C in/\f/[ {(3m,5) + Dev = Cl(5p,,s) + Dev (13.7)
me

for C' a positive constant. A result as (13.7) is called an oracle bound. In other words, we ask that the desired estimator
5 is not worse than a constant times the best theoretical choice 3,,,. The Equation (13.1) has to be understood as a
deterministic bound for £4.; and the term Dev is a deterministic deviation whereas, in the case ¢,4.,, the bound holds in
expectation or high probability and the deviation term is allowed to be a random quantity. Oracle bounds can also take
the form of
((3,5) < C inf (l(sp,s) + pen(m)) + Dev’ (13.8)
meM

where the infimum describes the best possible projection on S, weighed by the penalization term.
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A generic calculation We have, from (13.6), the following calculations

((3,5) = E[yn(3)] — E[yn(s)]
Vn(8) + pen’ (1) — E [y (s)]
= 7 (3) + pen(rm) + (pen'd — pen) (i) — E [y, (s)]
< Y (8m) + pen(m) + (pen'® — pen) (i) — E [y, (s)] (13.9)

The next step concerns the bound on 7, (5,,). It is actually possible to derive two kind of results that we detail in the
next two paragraphs. Each strategy lead to different form of oracle bounds.

First solution The first solution is to write 7, (5,,) as
Y (3m) = —pen(m) + E [y, (3:)] -
and then . .
0(5,5) < (3, 5) + (pen — pen'®)(m) + (pen'd — pen)(rh) (13.10)

The goal of the penalization step is, then, to look for good approximation of the ideal penalization pen'd by pen over the
models m € M.

Second solution The second solution consists in bounding v, ($,,) in a direct manner thanks to the definition of the
estimator §,,. Starting again from (13.9) and using

Yo (8m) < Yn(8m),

the bound on £(8, s) becomes

d

0(3,8) < (s, s) + pen(m) +7,,(sm) + (pen'® — pen) (1) (13.11)

We see that when one is able to find a penalization close to the ideal penalization, one can hope to get an oracle inequality
as (13.7). For example, if one can control uniformly the deviation between pen,y; and pen with high probability,

pen;y(m) < pen(m) < penyg(m) +C inﬁ/t £(8m, S) (13.12)
me

we get
£(58,5) < (1+C) inf £(3,,,s)

me

with high probability. An ideal context is when one is able to define a penalization such that, with high probability,

|pen(m) — penyy(m)| < e inf £(8,,s) (13.13)
me
so that 4
€
5,8) < inf £(Spm,
£(3,8) T, nf 0(8m, 8)

which is asymptotically optimal if ¢ — 0 as n — 0.



Chapter 14

Extra definitions

14.0.1 Sumable familly

Definition 18. Let (E,| - |) a normed vector space. We say that a family (a;)icr of elements of E is sumable if there
exists an element S of E such that Ve > 0, 3J. a finite subset of I such that VJ finite c I,

Zai—S

ieJ

J2J. = <e.

Then S is unique and we call it the sum of the sumable family a;.
Proposition 31. If the elements a; are non-negative, then

Jso:={i€1I:a; # 0} is at most countable

a;)ier 1 sumable < . ;
(ai)ier and the serie ), a; s convergent.

iEJ>0

Proof. Simply note that for any ¢ > 0, the set {i : a; > 2¢} is finite since it is included in J.. Then we have that

{i:ai¢0}=U{i:ai>%}.

neN

O

This is actually possible to adapt the proof to get the result for the general sequence (a;) where the result on the serie is
that it is commutatively convergent i.e. that any permutation of the terms lead to the same sum.

14.0.2 Processes

Definition 19. A modification of a process (Xi)ieT is a process (Xt)teT such that

P (\ﬁ, X, = Xt) _ 1.
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Chapter 15

Functional Analysis

15.1 Lemmas

We give here the proofs of some technical results.

Lemma 28. Let ay,...,a, and by,...,b, be complex numbers such that Vi, |a;| <1 and |b;| < 1. Then
n
|a1a2...an —blbgbn‘ < 2 |(17; —b1|
i=1

Proof. 1t is possible to rewrite aias...a, — b1bs...b, as
aiag ...an — b1b2 .- bn =a1a2...0p —a10a2 .. .an_lbn
+aias...ap—1b, —aias...ap—2b,_1by,
+ ...
+ aiby... by, —biby...b,

Then
|a1a2...an—b1b2...bn\ <|an—bn\+---+|a1—b1|

since the complex numbers are all of modulus less or equal to 1.

Lemma 29. For any pair of positive numbers a and b, we have that for any p > 1,
(a+Db)P < 2P~ (aP + bP)

Proof. Use the convexity of x — xP between the points a and b with A =1— X\ = 1/2.

Lemma 30. For any complez z such that R(z) < 0, we have

2
2
|ez—1—z|<%

Proof. By the Taylor-Young formula, we see that

e =1 —z| =

! ' Els
J (t— 1)z26tzdt’ < \z|2f (1 —t)dt = =~

0 0 2

where we used that |e*?| < 1, by the fact that R(z) < 0.
Lemma 31. Let I be an open interval of R and let ¢ : I — R be a convex function. Then we have the following facts
a) c is continuous on I.
b) For all x € I, c has a left derivative cj(z) and a right derivative c,.(z) such that ¢;(z) < c).(x).
¢) Fiz any v € I then for all D € [¢)(v), c.(v)], we have that Yz € I, ¢(x) = D(x — v) + ¢(v).
d) There ezists two sequences (ay)n and (by,), of reals such that

Veel, c(x)=sup(a,z+ by,).
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w
c(w) — ¢(v)
w—v
‘ ~e(v) e
U
\ v—u
v
Figure 15.1: Inequality (15.1)
Proof. If one takes u < v < w elements of I, we have that
Auw < Dy < Ay mmez%gzd%_j@. (15.1)
It is obvious to deduce that A, , is increasing in both x and y. Now let vy € (u, w) fixed. So
|C(v) = Clwo)l = |Aug,ollv = vo] < max{|Auvg,wl, |Au,vol}v = vl ~—> 0

and a) is proved. From (15.1), we prove that

cj(v) = imA,,, < limA,,, = .(v).
utwv ? wlv ’

The limits exists since the limits are defined for increasing (resp. decreasing) and upper bounded (resp. lower bounded)
functions. Let D € [¢}(v),c,.(v)] and let x € I. If © > v, we have that D < ¢,.(v) < A, 5 = (¢(z) — c(v))/(x — v). The
case z lev is obtained symmetrically. To prove d), we consider the point ¢) for all ¢ € I n Q where we choose for example
Dy = (¢)(q) + ¢.(¢))/2 and we define

f(@) = sup (Dy(z —q) + c(q)).
qelnQ

Now by density one can choose (gy,), a sequence of rationals in I such that ¢, — x. Then,

c(x) = lim (Dy, (x = gn) + ¢(gn)) < sup (Dy(z —q) +¢(q)) = f(2) < c(@).

n—00 qelnQ

We have ¢ = f and since I n Q is countable, one can renumerate the elements in a sequence. O

15.2 Basic facts on integrable functions
Proposition 32. Let f > 0 be an integrable function, then for any € > 0, there exists § > 0 such that
VFeBR), B(F) <3 — | f@)yuer <c.

Proof. Assume that the conclusion is false, then, there exist £y and a sequence of sets (F},), such that

P(F,) <27 and J.f(CE)]lf(x)an > €o.

Defining, F' = limsup F,,, we get from Borel-Cantelli lemma that P (F) = 0. However, reverse Fatou lemma shows that

ff(x)lf(x)eF > €0

but this is impossible since the integration of over a event of probability 0 is always 0. The absurdity of the assumption
gives the result. O

Corollary 9. Let f > 0 be an integrable function, then
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15.3 Basic properties and Fourier transform

Fact 1. The convolution between two measures given by
povd) = | Lapeadu(e)dviy)
RE xRk

s a probability measure.

Proof. Obviously, u* v(R*) = 1. Let Ay,..., A,,... be a countable family of disjoints elements of the borelian o-algebra.
Then one has that

oA, = Z Ly,

i>1
which implies p * v(Uiz14;) = 3,5, o * v(A;), by linearity of the integral. O
We recall proposition 7.
Proposition 33. For p and v two probability measures,
o |Fuls <1,
o F(uxv)=(Fu)x (Fv).

Proof. The first fact is obvious since the integrand has a modulus bounded by 1. For the second point, we see that for
any integrable function f,

@@ = [ s pdnin).
RE xRk

This can be seen by approximation of positive functions by simple functions. Then

F(p*v) ()

f exp(—iz - €)d(u * v)(2)

J exp(—i(x +y) - §)dp(x)dv(y)
Rk xRF

= ([ iz ) ([ expl-in- avin)

= (Fu&)(Fr(§))
O

Modulus of continuity Let g : R¥ — R be a function. Its modulus of continuity w(g,z,§) in z is a function taking
values in [0, 4+00] defined by

w(g,x,0) = sup  |g(y) — g(x)|.
yeR¥:|z—y| <5

By definition, it can be seen that
g is continuous at © < %iH(l) w(g,x,0) = 0.

Regularizing sequence We say that a sequence (¢, )nen of functions on R” is a regularizing sequence if
1. For all n, ¢, = 0.
2. For all n, {3, ¢, (x)de = 1.

3. For every € > 0, {5, ). dn(x)dz —> 0.

n—0o0

Proposition 34. Let 1 < p,q < o0 such that p~! + ¢~ = 1. Let ¢,, be a regularizing sequence of functions in L,(R¥).
Then, for any f € L,(R¥), we have that

frbn — f (in Ly(R")).

To prove that fact, we begin with a stronger case.
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Lemma 32. For a function g in Ly (R*) continuous at x, we get

g* on(x) — g(x)

n—0o0

Proof. Using the fact that ¢, is of total mass 1 by definition, we can write for any § > 0,
9+ 0nla) = a@) = | [ola =)~ g(@)on(u)dy

:J‘ [ﬂx—@—g@ﬂ%@ﬂy+f 9z — ) — 9(2)]én (y)dy
B(0,5)

B(0,8)¢

<M%%®+%ij bu(y)dy
B(0,6)°

Now, by continuity, take § > 0 sufficiently small to get w(g,z,d) < /2 and then take n large enough to have the second
term smaller than /2 as well. This finishes the proof. O

We are now able to prove Proposition 34.

Proof of Proposition 3/. Since the family of regularizing functions ¢,, are in L,(R*), the functions f = ¢,, are well defined.
Then by Jensen’s inequality,

|U*%M@—f@ﬂ<fIﬂw—w—f@W%AMW-

Rk

Integrating in z both sides and using Fubini’s theorem (everything is positive) we get that

107 %60 = 115 < [ 18y = 11 6uta)ds (15.2)

where f, holds for the function z +— f(x —y). Define g(y) = | f, — f||b, then it is a continuous bounded function such that
g(0) = 0. Hence, looking at the right and side of Equation (15.2) as g * ¢,,(0) we get, by Lemma 32, that it converges to
0asn— +o0. O

15.4 Distribution functions and simple functions

Definition 20. A simple function is a function f such that there exists a finite number n of real values A1, ..., \, and of
measurable sets A1, ..., A, such that

f= Z Ail g,
i=1

Definition 21. A function defined on an finite interval I = [a,b] is said to be absolutely continuous on I, if Ve > 0,
30 > 0 such that Vn and every finite familly of intervals (au, 51), (a2, B2), ..., (@n, Bn) in I such that

Z(ﬂi — ;) <6,

i=

[y

we have,
Z |f(Bi) — flaw)| <€
i=1

This definition implies the important,

Theorem 31. Let I = [a,b] and f : I — R a non decreasing and absolutely continuous function. Then, f is almost surely
differentiable on I, is in L1(R) and

f@) - f@) = | Fod voelab
Proof. This can be found in Rudin [11, Theorem 7.18] O

We have the useful lemma:
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Lemma 33. Let p be a probability measure on X and let f :— [0, +0] a measurable function. Let ¢ : [0,400) — [0, +00]
be a monotone function, absolutely continuous on [0,T] for any T < +o0 and such that $(0) = 0, then

J(Wﬁﬂu—fwuﬁ>ﬂd@ﬁ (15.3)
X 0

Proof. Since ¢ is absolutely continuous, it is almost surely differentiable. Now take a simple function f defined on X and
let B = {x € X : f(x) > t}. The set E! is measurable since it is a finite union of rectangles, then

uU>ﬂ:u@U:LJm»MM@

and, by Fubini,
+0 +00
| wtr =it = | auo) | 1y 00
X 0

0

But the right hand side integral can be re-written in
400 , f(z) .
| Ywmswa = [ s = o),
0 0

We end the proof by a classical density argument to insure the validity of (15.3) for any measurable function. O

A special case of Lemma 33 is the following result.

Corollary 10. For any non negative random variable X,
+00
E[X] :J P(X > 1) dt.
0
We draw the attention of the reader to the fact that the integral can also be written
+o0
J P(X =t)dt (15.4)
0

since integration on the open (0, +00) or on [0, +00) are equivalent for the Lebesgue measure dt.

Proof. Apply Lemma 33 for f, ¢ both equal to the identity function. O

15.5 Dominated convergence theorem

We recall rapidly the dominated convergence theorem that we reduce into (DOM) anywhere else in the notes. In the sequel
of this section, we denote by L (X, 1) the set of integrable functions on the measure space (X, ). When convenient, we
adopt the notation

Mﬁ:Lﬂmww.

15.5.1 Dominated convergence

Theorem 32 (Dominated convergence (DOM)). Let (fy,)nen be a sequence of measurable functions. Assume that for any
xe X, folx) = f(x) for f a measurable function. Assume also that there exists a non-negative function g € Ly (X, p)
such that,

|fn(2)] < g(z), VzeX,VneN.
Then,
Fo =5 fin Ly(X, 1),
and then
| f@anta) =, | f@ana)



98 CHAPTER 15. FUNCTIONAL ANALYSIS

Proof. This theorem is a direct consequence of Fatou’s lemma. Taking the limit in inequations, we see that |f| < g and
then |f, — f| < 2¢. The reverse Fatou Lemma gives

limsup (|, — 1) < plimsuplf — f1) = u(0) = 0.

This implies the convergence L. Then, by Jensen inequality,

lu(fn) = u(H)l < pl|fn = fI) — 0.

n—o0

O

One can notice that the only tool used in the proof is the reverse Fatou lemma. It is then immediate to show the following
corollary that study the case of convergence in probability of the sequence of integrated random variables.

Corollary 11 (Dominated convergence (P version)). Let (X,,), be a sequence of random functions such that for any z,

X, (x) P, X (z) and such that there exists a random function Y, integrable with respect to a measure p such that Vn,
| Xn| <Y. Then

| Xa@duta) 2 | X(@duto).
Proof. We follow the proof of Theorem 32 with the additional use of reverse Fatou lemma,
limsup P (p(| X, — X|) =€) < P(limsup p(|X,, — X|) = ¢) < P(u(limsup|X,, — X|) = ¢) =P (u(0) = &) =P(0 =¢) =0.

The reader may be confused by the first inequality. We used reverse Fatou for the functions 1,(x,—x|)=- and the fact
that for any sequence of random variables (Z,),

hmsup ]lZnZE = nh—IEO Zgg ﬂZkZE = TLll_{Igo]lsupkzn(Zk)Zs = ]lvgijnwsukan(Zk)Zs

where the last equality is clear since the sequence (supy~,,(Zx)), is monotone. O

Lemma 34 (Scheffé). Assume that f,, and f are non-negative functions in L1(X, u) and suppose that f, — f a.e. Then

J'fn = fldp — 0 if and only if ffndﬂ — deu
Proof. The direct sense is obvious. For the reverse, assume that
p(fn) — ().

First, one can notice that (f, — f)~ < f— fn < f by non-negativity of f,, and then (DOM) implies that u((f, — f)~) — 0.
For the positive part,

p((fn = 1)) = w((fn = Hp2p) = plfn) = p(f) = 1((fn = g, <s)
and [p((fn = F)1s,<p)| < |p((fn = f)7)| = 0. Then, p((fn — f)*) — 0 and
pllfn = fD) = 1((fa = HF) +ul(fa = £)7) = 0.

O
Scheffé Lemma have an important consequence for density functions associated with a probability measure P.
Corollary 12. The almost sure convergence of densities imply convergence in Ly (X, P).
Proof. Use Scheffé Lemma with the ’if” part since VYn, P(f,) =1 = P(f). O

The dominated convergence theorem is useful when the random variables are uniformly bounded by some constant K. In
this particular case, the weaker convergence (in probability) can be assumed instead of the almost sure convergence. The
following result will be used in the proof of Theorem 2.

Lemma 35 (Bounded convergence). Assume that X, L, X and that there ezists a positive constant K such that almost
surely, Vn, | X,| < K, then
E[1 X, — X|| — 0.
n—o0

Proof. The random variable X is also bounded in probability by K. Indeed, | X| < | X — X, |+|X,| < | X —X,|+ K, we have
that P(|X| > K +¢) < P(|X, — X| >¢) — 0. Hence, P(|X| > K + ¢) = 0,Ve > 0 which means that P (| X| < K) = 1.
By conditioning,
E[|Xn = X[] = E[|Xn = X[1x, —x|>e] + E[[Xn = X[1x, _x|<]
<2KP(| X, — X| > ¢) +e.



15.6. THE MONOTONE CONVERGENCE THEOREM 99

15.5.2 Fatou Lemma
In the following, we denote by a, 1 a, the simultaneity of a,, — a and a,, is increasing. (GIVE A GOOD LOCATION)
Lemma 36 (Fatou). For a sequence of non-negative measurable function (f,)nen, we have that,

p(liminf f,,) < lUminf p(fy).

A simple way to remember the order between { and lim inf, one of my teacher gave me the simple trick based on the lexical
ordering : il < li where [ stands for the limit and ¢ stands for the integral. This is interpreted as {liminf < liminf §.

Proof. Define the sequence (gi)x by,
o= 1t
The sequence is well defined as a infimum of a sequence of non-negative numbers. By definition of (g )k,
gr. 1 liminf f,,
and for any n >k, f, = gx, so that u(f,) = p(gr) and then,
#gr) < inf p(fn).

Since (gx) is non-decreasing, we can apply (MON) to get that

plimin £,) = p(tim g) N tim p(ge) < tim inf p(f,) = lminf p(f,).
nz=

O

Lemma 37 (Reverse Fatou). Let (fy,). be a sequence of measurable functions such that, for anyn, f, < g with u(g) < 40,
then

p(limsup f,,) = limsup pi(f,)

Proof. Apply Fatou Lemma for (g — f,)n- O

15.6 The Monotone convergence theorem

15.6.1 Monotone convergence for measures

We begin with the monotone properties of measures. For measurable sets (F,), and F, the notation F, 1 F means
Vn, F, € F,41 and |JF,, = F and F), | F means Vn, F,41 € F, and (| F,, = F.

Lemma 38 (Monotone convergence for measures). Let (X, ) be a measure space, then
1. If (F,,)n are measurable sets such that F,, 1 F, then u(F,) 1t p(F).

2. If (G)n are measurable sets such that G, | G and there exists k such that u(Gy) < oo, then u(G,) | p(G).

Proof. For 1., define G; = Fy and G,, := F,,;1\F,, and remark that these are disjoints sets. As the measure of a countable
union of disjoints sets equals the sum of the measures of the sets, we get

p(Fn) = u(

-

Gi) = Z u(Gi) = D u(Gi) 1 p(F).

i=1 =1

For 2., use 1. with F}, = Gx\Gg4n, F = Gi\G and decompose u(Gi) = pu(G) + u(Gi\G). O
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15.6.2 Technical lemmas
Doubly monotone convergence

Lemma 39 (Doubly monotone sequences). Let (an i )nen ken be a double sequence of non-negative numbers. Assume that
a is doubly monotone, which means

1. Vk e N, (ank)n is non-decreasing and Ias ; € [0, +0], anx — Gop k-
n—0o0
2. VneN, (apx)r is non-decreasing and Ia,, o € [0, +0], anr —> An.oo-
, , ko an,

Then,

lim aw = lim @y o-
. , p )

Proof. By a one-to-one transformation (by Arctan for example) of the sequence, we can assume it uniformly bounded.
Let
1) (2)

ay’ = lillcn Goo, and ax’ = lim ay, o.
n

Now let € > 0. Let k large enough, thus n = n(k) large enough to get

Ak > Aol — € > agé) — 2¢.
But ag) = Gp,o = Gy Which finally gives ag) > ac%). Repeating the argument symmetrically, we finally get the equality
of the two limits. O

Staircase approximation

In the following result, we expose a way to define a sequence of simple functions increasingly converging to a given function.

Definition 22. Let o, : [0, +0] — [0, 4+00] given by

0 ifx =0
ap(x) =4 ((i—1)277 if(i—1)27P<2<i27?<p (VieN)
D ifr>p

This function is left-continuous (i.e., if + — x¢ with z < xq, then ay(z) — a,(20)).

27P

Figure 15.2: An example of the staircase transformation

Proposition 35. The sequence (o, o f), is a sequence of simple functions such that apo f 1 f.

A simpler case: Simple functions

Lemma 40. Let (f,)n be a sequence of non-negative simple functions and f a non-negative measurable function such that
fn 1 f, then
1(fn) 1 p(f)-
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Proof. Step 1: (f = 14) Assume that f,, 1 14, for A measurable. We obviously have that u(f,) < u(14). Moreover, the
sequence of real numbers p(f,,) is non-decreasing. Let € > 0 and A, = {z € A: f,(x) > 1 —e}. We have that A, 1 A and
then, by Lemma 38, u(A,) 1 u(A). But, by definition,

(1-e)la, < fo
so that (1 —e)u(Ay,) < pu(fn). Since we took an arbitrary e, it holds that
p(la) = p(A) < liminf p(f) < limsup p(fn) < p(1a)

Step 2 : (f a simple functions) Let f be of the form f = > ax14,, for a finite number of A;. We apply the previous case
to the convergence of

alzl]lAkfn 1 ]lAk:

Step 3 : (Approximating f) We show that there exists a sequence fj of simple functions satisfying both u(fx) 1 u(f) and
fr 1 f. By definition of the Lebesgue integral,

w(f) =sup{u(h): his simple and 0 < h < f}.

Hence, there exists a sequence (hy) such that p(hg) 1 w(f). But using the staircase function «,,, we can construct a
sequence g, := oy, o f such that g, 1 f. Now define

fr = max{gr, h1,...,h}

Since (gx)x is non-decreasing, f} is also non-decreasing and p(hy) < p(f,) < p(f) and so holds the convergence pu(fi) —

w(f).

Step 4 : (Uniqueness of the limit) Let f,, 1 f and gx 7 f two non-decreasing sequences of simple functions. We show that
lim pu(f,,) = lim pu(gy). Define h,, ,, = min{f,, gx} and note that it is a doubly increasing sequence. Moreover,

hn,k — Gk and hn,k — fn
n—o0 k—o0
Since the limits gy, f,, and h, ; are simples functions, we can apply Step 2 and get

plhng) —> wloe)  and  plhng) — u(fa)

—00

which allows us to apply Lemma 39 to the sequence LR o)k and we get the uniqueness of the limit.
Step 5 : (Putting all together) Take f, defined in step 3, then u(f.) 1 u(f). But, by hypothesis, we have that f,, 1 f,

then by the uniqueness of the limit u(f,) 1 u(f) = lim u(f,). O

Monotone convergence theorem

Theorem 33 ((MON)). Let (f,)n and f non-negative measurable functions such that f, 1 f. Then

u(fn) T ().
Proof. By the staircase approximation, we construct a double index sequence (o, o fy)n,p of simple functions such that
apofnp_)—o’ofn and O‘pofnl:a’)apof

where the first fact holds by the definition of oy, and the second holds by the left-continuous property of a,,. Obviously,
the convergences occur in an increasing manner. Then applying Lemma 40, we get

N(O‘pofn) — M(fn) and M(apofn)p_)—;o/‘(apof)

p—0

which occurs again in an increasing manner. Now applying Lemma 39 for the sequence (u(ap © fn))n,p, we get

p(fn) T lim p(ay, o f) = p(f).
p——+00
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Chapter 16

Basic probability results

We state here the important Borel-Cantelli lemma.
For a sequence of events (E,), we denote {E,, i.0.} for the event

{En i.0.} = {w:Vm,3n(w) = m such that w e E,}.

= {w : w € F, for infinitely many n}
Lemma 41 (Borel-Cantelli). For a sequence of events (Ey), such that Y, P (E,) < +c0. Then
P(limsup E,,) = P (E, i.0.) =0

Proof. Defining G, := ] FE, and G := limsup F, so that we have G,, | G. Then for any m € N, we have

n=m

P(G) < PGm)< ), P(E).

Lemma 38

When we let m — +o0, >,

n=m

P(E,) - 0 and then P(G) = 0. O
Lemma 42 (Borel-Cantelli-reverse). For a sequence of independent events (E,), such that 3, _ P (E,) =+ one has
P(limsup E,,) =P (FE, i.0.) =1

Proof. We work with the complementary of E,, and we also note p,, = P (F,). By independence,

(05)- I10-m0

n=m n=m

—T

where this can be shown for every r = n > m to get a finite intersection first and then let » — o0. But since 1 —x < e

for = 0, one has that
[]=pn) <exp (— > pn> = 0.

n=m nzm

But since (limsup E,)¢ = liminf B, = (J,, (=, E, we get that P ((limsup E,)¢) = 0. O

Lemma 43 (Jensen Inequality). Let ¢ be a convez function on an open interval I of R of the form (a,b). For a random
variable X such that
E[|X]|] < 4o, P(Xel)=1, E[|lo(X)|] < +o0.

Then we have that
H(E[X]) <E[o(X)].

Proof. Let (ay), and (by,), defined in Lemma 31, in order to have ¢(z) = sup,,cn(anz + by,). Then, for any n,
E[¢(X)] = a,E[X] + by.
But since the inequality is valid for all n, the sup,, is also bounded by E [¢(X)] which gives the result. O

103
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16.0.1 Convergence in probability

The following results are stated for random variables taking values in R. At the simple cost of replacing |X — Y| by the
quantity d(X,Y) defined in Definition 2, we can generalize the following results to random vectors in R¥.

Lemma 44. Let (X,), be a sequence of random variables such that
+00
Ve >0, Y P(|X,—X|>¢) <+
n=0
then X, =5 X.

Proof. Let E,, . :={we Q:|X,(w) — X(w)| = ¢} and let A, :=limsup E,, .. The assumption of Borel-Cantelli lemma is
fulfilled and thus P (A.) = 0. But

AS ={weQ: Ing,Vn = ng, | X, (w) — X(w)| < e}

is then of probability 1. Let &; = 27% and let

o0
A= () A2,
i=0
The set A is a countable intersection of events of probability one then is also of probability 1. Now for any w € A, we have
that X,,(w) — X(w). This is exactly X, “% X. O

We see directly that the assumption of Lemma 44 implies the convergence in probability of the sequence X, towards X.
The convergence of probability does not implies convergence almost sure as seen by Example 2.

Lemma 45. Let (X,,),, be a sequence of random variables such that X, 2, X. Then there exists a sub-sequence (Xp, )k
such that X, =% X.

Proof. We will extract a sub-sequence of the sequence (X,,),, which verifies the assumption of Lemma 44. Let ¢, = 27%.
The convergence in probability implies that P (|X,, — X| > &) — 0 then In; € N such that
n—00

1
P(| Xy, — X| > e) < =
Let € > 0. There exists kg € N such that Vk > kg, e < &, then
{[Xn, = X| > e} < {|Xn, — X[ > e}

We verify the assumption of Lemma 44,

+o ko—1 +00
Z]P(|Xnk_X|>€)< Z]P(|Xnk_X|>€)+ ZP(|Xnk_X|>€k)<+OO
k=0 k=0 k=ko summable
<400
and then X, — X <5 0. O

16.0.2 From convergence in P to a.s.

In this section, we give a simple argument that permits to bridge the gap between convergence in probability and conver-
gence a.s. This is doable when the random variables are upper bounded by a common variable.

Lemma 46 (Kolmogorov Truncation). Let X1,...,X,,... be random vectors such that there exists X a positive random
variable with E[X] < o0 and Yn e N*, | X,,| < X. For all n € N*, define

v [ X X <n
10 if | Xnl >n

Then,
i) P(X, =Y, eventually) = 1. [PRECISE THIS]
i) | D=1 n 2 Var (Yy) | < oo,
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Proof. For proving i), we use Borel-Cantelli’s lemma (Lemma 41) and the fact that

MV, #Xn) = ) P(|Xn] >n) < Y P(X >n) <E[X] <.

n=1 n=1 n=1
For i), we see that
_ X, 21 Ll<n E[|X,.[?1 l<nlx<n
|3 n2var (1) < 3 n B [[v)?] < 3 E| n2nx,u< I . 3 [, |\;¢2/\|< X<n] S E[Lon]
n>1 n>1 n=1 n=1 n=1

<) XHX<"]+IE[X]=E PSS 1Y

n=1 n>max(1,X)
2

max(1, X)

1 1
<2E|[X* > =- — +IE[X]=2]E[
n n

n>max(1,X)

]+]E[X]<3E[X]<oo

O

This later result allows to derive a implication between convergence in probability and convergence a.s. for sums of random
variables.

Lemma 47. Let X1,...,X,,... be random vectors such that there exists X a positive random variable with E[X] < o

and Vn e N*, | X, || < X. We assume that

n

Sn:%ZXnL,u.

i=1

Then,
Sp =5 .

Proof. Since the sequence (X;); is uniformly bounded by X which is integrable, we have that it is U.I. (see Proposition
1) and so is (Sp)n. Hence, one has that

ZE[XH] oM

n——+0o0

Now, using the Y; of Lemma 46, we get that

1 n
7ZY——2X 230 and also EZ]E[YH] =2, 1 (by DOM).

Then, it only remains to show that n=! > Y; — E[Y;] % 0. The second point of Lemma 46 allows us to use Lemma 44
together with Bienaymé-Chebyshev inequality to get the conclusion. O

Remark 4. Notice that the same trick can be used to show that

sup — ZX”—>O < sup — ZX”—>0

teT T3 teT T}

under the uniform assumption Vi, |X; .|| < X, such that E[sup X;] < co. In this case, point i) of Lemma 46 will be
replaced by P (Yt € T, X, = Yi, eventually) = 1.

Exercice 29. Show the equivalence of Remark /.

16.1 Stein equation for Gaussian vectors

Stein equation is one of the numerous characterization of the Gaussian law. We first derive the 1 dimensional case and
extend the sufficient condition in the case of Gaussian vectors. We recall that the notation C; holds for the set of functions
that are piecewise differentiable and of bounded derivative.

Proposition 36. Let X be a real random variable such that E[X] = 0 and Var(X) = o%. Then it holds that

E[XF(X)] =oE[F'(X)], VF e C}(R) = X is Gaussian (16.1)
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Proof. Without loss of generality, we only prove the Proposition for standard Gaussian variables as it is always possible to
renormalize a centered Gaussian variable to a standard one. Let Z be a standard Gaussian variable, then for any function
F in C}(R),

E[F'(2)] Je = 2dz

1
=—— | F'(z
V2T JR
1 0 z /2 JrOO +0o0 2/2
= — F'(2) —ze ¥ dxdz + — T drdz
V2T Jfoo Jfoc J J

- \/% LOOC (J: F'(z)dz) (—x)e Py + — JNO (r dz) ve " 2 dy

+00 2
_ Ef (F(x) — F(0))we™2de = E[ZF(2)).

and this shows the necessary condition. For the sufficient condition, let F, be a solution of the differential equation
Y — 2y = Lo (@) — O(2)

where ® is the cumulative distribution function for the standard Gaussian variable. This simple differential equation have
solutions that are in C} and can even be expressed explicitly in terms of the function ®. Since E[XF(X)] = E[F'(X)]
for any function in C}, one deduces that

0=E[F/(X)-XF.(X)]=P(X <z)—®(z)
which concludes the proof. O
It is possible to generalize the sufficient condition of Proposition 36 to a multidimensional context.

Proposition 37. Let F : R* — R a function in C,} and let X = (X1,...,Xq) be a centered Gaussian vector. Then, for
any 1 <i<d

Z E[o;F(X)].

Proof. This is easily proved using Proposition 36 and a conditioning on the variables X, for k # 1. O
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Carathéodory theorem

17.1 Measure set theory

17.1.1 Special class of sets

Algebras For a set (), we define an algebra as a collection ¥y of subsets of {2 such that
e (e .
o If e Xy then F°¢ e Xg. (Stable under complementation)

o If Iy, Fy € ¥ then Fy U Fy € Xy. (Stable under finite union).

o-algebras A collection X of subsets of € is a o-algebra if
e Y is an algebra.

o Iy, Fy,...,F,,---€Xthen |, yFn€X. (Stable under countable union)

neN

In the context of o-algebras, we omit the index 0 in the notation of ¥. This is to strengthen the fact that o-algebras are
the main purpose of measure theory.

Comments 1. Note that it is always possible to assume that the sequence of elements are disjoints since, one may replace
the sequence by G1 = F1,Gy = Fo\Fy,...,G, = F,,\ U;:ll F;, ... which is such that

UFn:UGn.

neN neN

m-systems A collection X of subsets of €2 is a m-system if
o [, F5 e Xy then Fy n Fy € ¥. (Stable under finite intersection)
It is direct to see that any o-algebra is an algebra and any algebra is a 7-system.
A-sets For a function A : 3¢ — [0, +00] on the algebra ¥ and such that A(¢F) = 0, we say that a element L € 3 is a

A-set if
VK € %o, M(L nK)+ AL n K) = X\K). (17.1)

o-algebras generated For a class C of subsets of 2, we define the o-algebra generated by C and denoted by o(C) as
the smallest (for the inclusion) o-algebra that contains C. In more precise words, o(C) is the intersection (show that it is
still a o-algebra) of all o-algebras that contain C.

17.1.2 Definition of measures

As in the previous section, we define special classes of functions Xy — [0, +o0] adapted to each context of subsets defined
above.

107
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Additivity Let X be an algebra. A function g : 3o — [0, +00] is said to be finitely additive (or additive) if

e 110(F)=0.

e For any pair of disjoints sets Fy, F» € X, we have
po(Fy v F2) = po(F1) + po(F2).

Measure Let ¥ be an g-algebra. A function p: ¥ — [0, +0o0] is said to be a measure (or countably additive) if

o w()=0.
e For any sequence of disjoints sets I, Fs,..., F,,--- € X, we have
N(U F,) = Z 1(Fy).
neN neN

All together the triple ©, %, i is called a measure space. The measure p is said to be finite if () < +00. mu is said to
be o-finite if there exists a sequence 21,...,€),,... of elements of > such that

U Q,=Q and pu(Q,) <+ow,VneN.

neN

A probability space is a measure space €, %,  where () = 1 and the measure p is called a probability measure.
We usually adopt the notation P instead of y for a probability measure.

A more general notion of measure is the so-called outer measures that are a building step to construct important examples
of measures such that Lebesgue measure.

Outer measures Let X be a o-algebra. A function ug : ¥ — [0, +00] is called a outer measure if it satisfies

® jio(F) = 0.
e (increasing) For any two sets Fy, F5 € ¥ such that [y € Fy,

po(F1) < po(F2).

e (countable sub-additivity) For any sequence Fi,..., F,,... of elements of X,
o[ Fn) < D mo(F).
neN neN

17.1.3 Extension theorems

Proposition 38 (A-sets form an algebra). Let Lo be the set of all A-sets of an algebra o. Then the set Ly is an algebra
and the restriction Az, : Lo — [0, +00] is additive.

Proof. We verify the three axioms of an algebra.

Full set 2 is obviously a A-set.

Complementary By the symmetry of the definition of a A-set, its complementary is trivially a A-set.

Stability by finite intersection Let L, and Lo two elements of Ly, let L = Ly n Ly and let K € ¥. Since Ly, Lo are A-sets,
we get that

MLAK)+ ML nLon K) = ML2 n K) (with L; and Ly n K)
ALz A K) + ML§ A K) = A(K) (with Ly and K)
AL A K) = MLy n LS 0 K) + MLS n K) (with Ly and L® n K)

where we remark that L¢ n Ly = Lo n L{ and L° n L§ = L§. Now summing up the three equalities leads to the desired
equation for L.
A is finitely additive Let L; and Lo two disjoints A-sets. Using Equation (17.1) for Ly and K = Ly u Ls, we get

)\(Ll U Lg) = )\((Ll ) Lz) N Ll) + )\((Ll o Lg) N Li) = )\(Ll) + )\(Lg)

which finishes the proof. O
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The following lemma explores the case of o-algebras instead of simple algebras. Its stronger structure permits to deduce
that pg is a measure at the cost of assuming that it is already a outer measure.

Lemma 48 (Carathéodory Lemma). Let A be a outer measure on (2,X). The class L of all the \-sets in X is a o-algebra
on which the outer measure \ is a measure.

Proof. Thanks to the result of Proposition 38, we already know that A is additive. Hence, the only two things that remains
to show is the countable additivity for uo and the stability under countable union for £. Let Lq,..., L,, ... be a sequence
of disjoints elements in £. Let L = (>, L,. By the fact that any finite union of elements in £ is again in £, we get that
for M,, = |J;_, Lk and any K € X,

ME) =AM, nK)+ AXM5nK) =AM, nK)+ ML n K)

since L¢ € M. But then, using Proposition 38 again leads to the following inequality
n
AME) = Y MLk n K) + ML A K)  (Yn>1),
k=1

and taking the limit and the countable sub-additivity we finally get
AK) = Y MLk 0 K) + ML 0 K) > ML 0 K) + A(L° A K).
k=1

On the other side, the sub-additivity of A\ implies,
ME)SAMLnK)+ ML N K)

and then the two previous inequalities imply that all the inequalities written above are actual equalities. In particular,
this shows that L belongs to £ (and then L is a o-algebra) and taking K = L we see that

AL) = >0 ML)

k=1

17.1.4 Carathéodory theorem
The following theorem is an angular stone to construct all the measures that are commonly used in probabilistic theory.

Theorem 34. Let () be a set, and let ¥y be an algebra on 2. We associate to X its generated o-algebra ¥ = (). Let
1o be a countably sub-additive map po : Xg — [0, +0]. Then, there exists a measure p: 3 — [0, +0] such that

/u’|):o = Ho-

Moreover, if 1o(Q) < +0o0, then the extension u is unique.

Remark Many authors do assume that the map po is countably additive in Theorem 34. It is actually not needed
as seen in the proof below. Besides, it is usually of similar complexity to show countable sub-additivity or countable
additivity. As a corollary result, we get that pug is in fact countable additive as a restriction of p.

Proof. We consider the largest o-algebra possible G that contain all the subsets of 2. We define a function A : G — [0, +0]
by
ANG) =inf Y po(Fn) (VG e G)

n=1

where the infimum is taken over all the sequences (F%,), of elements of Xy such that G <, Fhn-

Fact 1 : X is an outer measure on ({2, G)

It is direct to see that A\(¢¥) = 0. It is also direct to get the increasing property since the definition of X involves an inf.
For the sub-additivity, let (G), be a sequence of elements of G such that A\(G,) < 400 (otherwise there is nothing to
prove). Then, for any n > 1 and € > 0, it is possible to find a sequence (F), ) of elements of ¥ such that

Gn - U Fn7k and Z MO(Fn,k) < )‘(Gn) +e27"

k=1 k=1
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Functions : Xy — [0, 400]

additive

measure outer measure

(countably additive)

Prop :
uniquely
de fined on
T — system

Prop : AN
X is additive "«
on Ly \

/ Prop :
A is a measure
/ on Loy

T
W | ‘
\
generated \ Prop :
by a \\ Lo is o
T — system . ao—algebra Class Lyof ,

A —sets 7
7

o — algebras

algebras

Subsets %o of 2

Figure 17.1: A sum up of the classes of importance in measure theory represented as inclusion of sets for sub-classes. On
the bottom side, the definitions of different types of classes correspond to definitions for non-negative valued function on
the top. The inclusions represents sub-classes and bold notions are enlightened to show their major importance. Finally,
dashed lines are reserved for minor notions.

Let G =5, Gn S Un7k>1 F, 1 so that (Fy x)nk is a sequence of elements of ¥, containing G. Then,
ANG) < D) mo(Fugk) < Y MGy) +¢
n,k>=1 n=1
and since, ¢ is arbitrary, we get the sub-additivity.
Fact 2 : X is a measure on (2, £)

We define L the class of A-sets on the class G. By Carathéodory Lemma 48, we get that £ is a o-algebra and A is indeed
a measure on L.

Fact 3: \ = Mo On (Q,E())
Let F' € 3. We have directly that A(F) < po(F) (pick a silly sequence). For the A\(F) = po(F') part, pick any sequence
(Fy)n of elements of 3y with an union containing F' and define the sequence of disjoints sets (Ey,),, by

n—1
Bi:=F,  E,=F\|JF
k=1

Then, by the countable sub-additivity of pg, we get
po(F) = po(|J(F A En) < D) po(F 0 En) < 7 po(En) < ) po(F).-

n=1 n=1 n=1 n=1

Now, taking the infimum on both sides gives pg(F) < A(F') hence the equality.

Fact4: Yg < L
Let F e ¥y and K € G. We will show that F' is a A-set. By the sub-additivity of A, we already have that

ME) S AFnK)+AMF°nK).
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For any e > 0, there exists a sequence (F,),, of elements of ¥y such that K < | F,, and

n=1

> mo(Fn) < ME) +&.

n=1

But, we also have
Dno(Fy) = > po(F A F) + Y po(F® A Fo) = MF A K) + AF° n K).

n=1 n=1 n=1

Since, ¢ is arbitrary, we get that A(K) = A(F n K) + A(F° n K) which concludes the fact.

Fact 5 : Definition of p

By the fact 2,3 and 4, we get that ¥y € ¥ := 0(3g) < £. But since we already defined )\, a measure extending po on L,
it suffices to define p as the restriction of A on X.

Fact 6 : Uniqueness of p

In the case of u(f2) < o0, we use Theorem 35 to conclude. O

A important side result of the proof that we gave here is a general construction of an outer measure on any algebra.

Canonical outer measure To any algebra Y, defined on 2, one can construct an outer measure by the formula

ANG) =inf Y po(Fn) (VG e P(Q)) (17.2)

n=1

where the infimum is taken over all the sequences (I7,),, of elements of ¥ such that G < | J,,~, Frn- Such an outer measure
is named the canonical outer measure associated to Xg. But one has to be careful since a little structure (namely the
sub-additivity) on g is needed to have that A and po coincide on Xg.

17.1.5 Uniqueness of extension

In this section, we treat the case of the uniqueness of the extension of measures. In fact, it is sufficient to define the
values of the measure on a smaller set than the o-algebra ¥. The adapted notion is the 7-systems. From the definitions,
it is clear that o-algebras are a stronger structure than m-systems. What is lacking from a m-system to be a o-algebra is
precisely the topic of d-systems (for Dynkin) defined in the following.

d-systems Let ) be a set and D be a collection of subsets of {2 having the three following properties:
e QeD.
e For any two elements A, B € D with A € B, we have B\A € D.
e For any sequence (4,), of elements of D such that A, 1 A, then A€ D.

Such a set D is called a d-system. For a class of subsets ¥y, we denote by d(3() the generated d-system as the set
given by the intersection of all d-systems containing Y.

Proposition 39. Let X be a class of subsets of Q. Then X is a o-algebra if and only if it is a w-system and a d-system.

Proof. We only need to prove the if part since, obviously, a o-algebra is a m-system and a d-system. Assume that X is
a m-system and d-system. If F' € X, then F° = Q\F € X. Also for F|, F, € ¥, we have Ff n F§ € ¥ (m-system) and
FyuFy, = Q\(FfnF§) € X, so that X is an algebra. Now let (F},), be a sequence in ¥ and G,, = Fy U -- U F,,. Obviously,
GnTUFk and then UFkEZ. O

It is now the time to give the important result of the section.

Lemma 49 (Dynkin). Let ¥ be a w-system. Then
d(3g) = o(Zo).
Proof. It is obvious that we have d(Xy) € 0(X)) so it is enough to show that d(3) is a m-system. For that purpose, define
Dy :={Aed(3): VBe Xy, AnBed(X)}

and
D2 = {A € d(EQ) : VBe d(Eo), AnBe d(zo)}
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We have Dy € Dy < d(Xo) and we will show equality of these sets. First, we see that ¥o < D; (since Xy is a m-system).
Thus, it is enough to show that D; is a d-system. To see that, write for A; S As two elements of d(3g) and B € X,

(A2\A1) n B = (A3 n B)\(A1 n B)

and for a sequence A, 1 A in d(Xg),
(A, nB) 1 (An B).

The set D; being a d-system, we have that D; = d(3g). By definition of Dy, this last fact insures that Xy € Ds. But
as before, Dy is actually a d-system then Dy = ¥, and this shows that d(Xg) is a 7-system then a o-algebra. Finally,
d(zo) = O'(Eo). O

We are now ready to prove the following uniqueness result.

Theorem 35 (Uniqueness of extension). Let 2 be a set such that 3¢ is a w-system on . We define ¥ = 0(Xg). Let iy
and py be two measures on (Q,X) such that

o 111(€) = pa(Q) < o0
e VA€ 20, /J,l(A) = ,LLQ(A).

Then,
p1 = p2  as measures on (£, %).

Proof. Let D := {Ae€X: u1(A) = p2(A)}. The goal is to show that D is a d-system. For any A, B € D with A € B, we
have that

p1(B\A) = p1(B) — p1(A) = p2(B) — p2(A) = p2(B\A)
where the equality holds since we are only dealing with finite values. Then B\A € D. Let A,, 1 A where A4,, € D, then

1 (A) =1 i oy (An) =1 i s (A,) = po(A)

where we used Lemma 38. Thus A € D and D is a d-system. We have ¥y € D then, using Dynkin’s Lemma, we get that
D=1X. O

Remarks The assumption on the finiteness of p(Q2) is important and cannot be avoided. The assumption that u; and
1o are two measures is also important to use Lemma 38. The conclusion also fails to hold if y; and ps are only assumed
to be finitely additive.

17.1.6 Definiton of the Lebesgue measure

The construction of Lebesgue measure is an important step to understand the classical construction of Skorokod for the
existence of random variables of given distribution function. There is actually two options to define a measure based on a
restriction of outer measures. The first one is to use Carathéodory extension theorem directly and then the only thing to
check is the sub-additivity of pg. The second is to define the outer measure directly and to show that the outer measure
defined in Equation (17.2) equals pg on the algebra. We follow the second option here. The interested reader may find
the other option in [19, A.1.9].

Definition of Leb on ((0, 1], B((0,1]))
We define an algebra,

Yo = {A = (Cbl,bl] (UREENV) (ar,br] cr=21, a; <b;<a;4q < bi+1,V’i}.

as the set of all finite disjoint unions of semi-open intervals. It is easy to see that o(Xy) = B((0,1]). We can easily define
a countably additive map g on Xy by

T

po(A) := Y (bi — a)

i=1
that we will extend into Leb. It is easy to see that pg is well defined and finitely additive. Let A be the canonical outer
measure defined on ¥g. In our context,

r

)\(A) = mf{Z(bl —(17;) : Ag O(ai,bi], r= 1}
i=1

i=1
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where the infimum is on the sets of the form of a disjoint union  J;_, (a;, b;] that contain A. By Theorem 34, the outer
measure A is in fact a measure on o(3g). At this point, we could consider that the work is done since a measure has
been constructed but it is still not obvious that for A € 3y, ug(A) = A(A). By finite additivity it is enough to show that
A((a,b]) = b — a. By construction, we already have that

A(a,b]) <b—a

but for any finite disjoint union of sets | J;_, (a;, b;] such that

-

(Cl7 b] = (ai, bi],

i=1

we have by simple calculation that
b—a< Z(bi—ai)
i=1

which implies that b — a < A((a, b]). This reasoning is also applicable to show that A({a}) = 0.

17.2 A random variable of given law

The law (or the probability distribution) of a random variable X on the probability triple (£2, ¥, P) is the image measure
Lx = PoX ™! For agiven £(X) it is always possible to define a probability triple and a random variable that correspond
by taking X = id and P = Lx. This purely theoretical definition is not that interesting since it does not give any extra
information. A more interesting question arises when one imposes a probability triple at the origin (usually (R, B(R), Leb)).
This new question is tackled by Skorohod construction.

17.2.1 Real valued random variables
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Chapter 18

Szemeredi Regularity Lemma

18.1 A basic lemma

A refined version of Cauchy-Schwarz inequality One can use regular Cauchy-Schwarz inequality to obtain the
following refined result.

Lemma 50. Let (a;)1<i<n be non-negative, (b;)1<i<n € R™ and let b€ R such that

Zn:aizl ialblzb
i=1 i=1

Let p > 0 and assume that 3j < n such that

Z ab; = ab+ p
i=1
where a = ZZ=1 a;. Then
Z aib? = b2 +
= a(l —a)
Proof. We have that
Dlab — b7 = > a;b} — 2% + b7
i=1 i=1

i=1 i=j7+1
, 2 2
(S at-n) (3 w-b)
Za\ & 1—al\ &
=1 i=j+1
2 2 2

T R

a l1l—a a(l—a)

where we used that 37_, a;(b; — b) = — iz jy1ai(bi = b). O

We can derive a useful corollary:

Corollary 13. For any sequence (xy)x such that

i a0

=1

3\3

=

we have, for m <n,
2
50015 s
= n\ = m(n —m)
Proof. Use Lemma 50 with a; = 1/n, g = §/m and b;

115
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18.2 Regular graphs and partitions
In this section, we define the notion of regular graphs that is a graph that has a lot of characteristics in common with a
random graph. For a graph G = (V, E) and X,Y < V, we call density between X and Y the quantity

_e(X,Y)
XY

d(X,Y)

where e(X,Y") is the number of edges between an element of X and an element of Y and | X/, |Y| hold for the cardinals of
X and Y. Of course, d(X,Y) < 1 and the equality is obtained if the edges between X and Y correspond to the complete
bipartite graph.

Definition 23. Let G = (V, E) be a graph and let X, Y < V be disjoints and non-empty. We say that the pair XY is
e-regular if for any A< X, BCY, such that |A| = ¢|X| and |B| = ¢|Y|, it holds that

|d(A,B) —d(X,Y)| <e.
The pair X,Y is called -irregular otherwise.

A equitable partition of a graph is defined as P = (Cp,...,Ck) where the number of vertices in Cy,...,C) are the
same. The class Cj is called the exceptional class. The index of an equitable partition P is given by

1
Ind P = ﬁ Z d(CZ',Cj)Q

1<i<jy<k

The index is a suitable notion of the refinement of a partition since we have that 0 < Ind P < 1/2 and Ind P < Ind @, if
Q is a refinement of P.

Definition 24. Let G = (V, E) be a graph and let P be an equitable partition of V into Cy,...,Cy. The partition P is
called e-regular if |Co| < en and if at most ek? pairs (C;, C;)i; are e-irregular.

The important remark in the paper of [14] is that a particular manner to refine irregular partitions ensures that the index
increases by a lower bounded quantity and is, then, possible only a finite number of times.

Lemma 51. Let G = (V, E) be a graph on n vertices and let P be a equitable partition of V into Cy,...,Cy. Let € be
such that 4* > 600e=>. Then, if there is more than ck? irregular pairs, there exists a equitable partition Q of size at most
1 + k4% such that the cardinality of the exceptional class does not exceed |Co| + 1% and such that

5

€
Ind Q > Ind P+ —.
nd Q) n +20

We are now able to state the main theorem.

Theorem 36 (Szemeredi Regularity Theorem). Let ¢ > 0 and t € N*, then there exists integers N(e,t) and M (e, t)
such that every graph G = (V, E) with |V| = N(e,t), there exists a e-reqular partition of G into k + 1 classes such that
t <k < Ml(e,t).

Proof of Theorem 36. We begin with a trivial partition that have enough elements. Let s be an integer such that 4° >
600>, s > t and s > 2/e. Define the function f by f(0) = s and for any integer k,

flk+1) = f(k)4ID.

Let G be a graph (whose number of vertices n is greater than N (e,t)) and let

k 5
T = {k e N: 3 a partition P into 1 + f(k) classes s.t. Ind P > % and |Cp| < en(1 — 27Ty},

Of course any such partition verify |Cy| < en and 0 € T since any partition with |Cy| < en/2 and letting the rest of C; being
completely free fulfills the assumptions of 7. On the other hand, 7" has a maximum since Ind P < 1/2 adn denote kg this
maximum. Then there exists P a partition into 1+ f(ko) classes such that Ind P > koe®/20 and |Cy| < en(1 — 2~ (ko+1)),
Assume that P is not a e-regular partition. Then, by Lemma 51, one can construct another partition P* into 1 + f(ko)
classes such that Ind P* > (ko + 1)&°/20. Obvious calculation also show that the exceptional class fulfills the condition of
T if

i < 2= (kot2) g5 > g1

4f (ko) =
which is obviously satisfied by the choice of s. This contradict the maximality of kg then P is e-regular. In this construction
M (e,t) can be taken equal to f(|10e=°|) and N(e,t) be such that the graph could be cut into f(M (e, t)) + 1 if needed so

N(e,t) = f(M(g,t)) + 1. ]



Chapter 19

Sobolev spaces W'

In this chapter we gather the important features of Sobolev spaces that are needed for the approximation of the functions
inside these spaces by polynomial functions.

19.1 Notations and definitions

19.1.1 Functional space W (A) and V5(A)

Let @™ be the m-dimensional half-open unit cube in R™ (i.e. 0 < z; < 1,7 =1,...,m). We denote by k = (ki1,...,kn)
a multi-index (Vi, k; is an non-negative integer), z* = [[I", 2¥" and |k| = Y k;. We denote by D* the corresponding
diferencial operator given by
okl
Db = ——
6fo o (%vﬁlm

For a cube A with edges parallel to the coordinate axes, p > 1, @ > 0 we denote by W' (A) the Sobolev space endowed
with its natural norm | - e (a). We recall that for § = a — |a] and uw e W' (A),

”UHW;!(A) = |lufz,(a) + ”uHLg(A)

where
- k. |p
il = Y [ 10"l
|k|=a ¥ A
The semi-norm | - | L3(A) has a homogeneity property with respect to linear transformation of the cube.

19.1.2 Density of C°

19.1.3 Alternative norm for a bounded 2

It is known since the work of Sobolev [13] that it is possible to define a family of different norms on the space W' that turn
to be equivalent to the canonical definition introduced in the previous section. For ¢ € N* we define by P, the projector
onto the set S, defined as the set of polynomials of degree less of equal to £ — 1. The projector P, is uniquely defined as
the linear operator P : W*(Q2) — Sy such that

J z' Ppu(z)dx =J rlu(x)dr, Vi < k.
Q Q

Along with the operator Py, we define the operator that projects on the supplementary of Sy as P = id —Py. It is possible
to define a norm on the set of polynomials Sy. If a polynomial P € .S, is of the form

=1 —1
P=> 3 aX*=> > o a X{t XS

k=0 a:|cr|=k k=0ai,...,am
Ya;=k

117
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we can define the norm || P| g, by the formula

p/2

=Sy (F e
Se ona [0 5 Y 0 7o) Q1s.nyOm

k=0 \ ai,..., m
Y=k

The choice of the norm on the polynomials is actually quite arbitrary as we will see in the following. The only hypothesis
that one wants to impose to the norm chosen is that it is dominated by the infinity norm on the coefficients of the
polynomial. The reader may adapt the following results for different choices of norms on S, depending on their specific
needs.

Proposition 40. Let o > 0, 1 < p < © and £ = |«a|. Assume that Q) is star-shaped and bounded. For any u € W (€2),
we define the norm

|HU’|HW;(Q) = | Ppulls, + HPZ*UHLg(Q) = |Ppuls, + HUHL;;(Q)~
Then the norms || - [[weq) and | - |we(q) are equivalent.

Proof. First of all we see that the equality inside the definition of the norm is justified by the fact that the ¢-th derivative
of a polynomial of order < ¢ — 1 is identically null. Then the polynomial part of Pfu = u — Pyu which corresponds to
Pyu does not affect the norm, which implies |Pfu[rs (o) = |u[Lg (o). First, we have that [ul|za() < |u[we (). Using the
Gram-Schmidt process, we see that one the coefficient aq, ... o,, can be expressed as

Aoy ,...ooim :f Bal,...,am(x)u(l’)dit
Q

where By, .. q,, is the element of the Gram-Schmidt basis resulting of the transformation of the monomial X7 ... X5%m
in the Gram-Schmidt process. On the bounded set (2, the polynomial By, .., is bounded so that applying Holder’s
inequality, we get that for a constant K, such that

m

yeeeyQmy
< H H p
Ao,y S Kocl,...,ocm Uujl L, -

Since the norm | - |, is dominated by the norm maxgq|<¢—1 |@a;.....a,, | then there exists an absolute constant K such

that

| Peulls, < Klulz,.

This finally shows that there exists a constant C' such that
lullwe @) < Clulwe @) (19.1)

To prove the converse, we use the density of CZ°(€2) inside W () for the norm | - [we (o). By (19.1), the density also
holds for the norm || - [|ya(q). So it remains to show that for any function f € CZ°(€2), we have that

1 flwe@) < Cllfllwe @
or even that

”fHLp(Q) < C|Hf|\|w;(sz)
We denote by Py the polynomial that corresponds to the development of the function f in its Taylor expansion up to
the degree ¢ — 1 around a point a € ). We assume that the chosen point is a point of {2 such that for every x € €2, the
segment [a,x] is included in 2. This is possible since 2 is star-shaped. Then, since P; belongs to S¢, PPy = Py and
IPfllwe ) = |Pfls,. But since the linear space S is of finite dimension, the norms | - s, and | - |1, (q) are equivalent
on Sg. Then |Py|r, ) < C[|P[lwg ). It remains to show that

If = Prllz, o < C\Hf”\wpa(n)-

By Taylor’s formula for multivariate functions, we have that

f=Pi@)= ) Rs(a)z—a)’
|Bl=¢

where )

Rg(z) = éjo (1—8)tDPf(a + t(x — a))dt.

By the fact that € is bounded and that polynomials are bounded on bounded sets, we have that there exists a constant
C such that
If = Prll,@ <C Y} IRsl,@) < Clfleg < Cllfllws
|B]=¢
and that concludes the proof. O
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19.2 Embedding theorems

In this section we recall and prove in a special case, the famous embedding theorems of Sobolev spaces into L,(f2) or
C(9) spaces. We recall that when we say that an injection of a linear space A into another linear space B is continuous,
it means that the identity is continuous in the sense of linear operators. In other words, this means that

Vae A, |a|p < Clala

where C' is an absolute constant.

19.2.1 Case of Q =RY

Theorem 37 (Embedding theorems). Let m > 1 be an integer and let 1 < p < co. Then we have the following cases

1. if% — % >0, then W;”(RN) < Ly(RYN) for any q € [p, p*] where pi* = % — %
2. zf% — R =0, then W (RY) < Ly(RYN) for any q € [p, +0),
3. if 5 — % <0, then W (RY) < Lo (RY),

where the injections are continuous. In that third case, for k = |m — %J and 06 = m — % — k, we have that for any
uwe W RY),
| D%ulr.,&n) < Clulwpeyy Ve, of <k (19.2)

|D%u(z) = D*(y)| < Clulwp@ylle —yl° ae z,yeRY, VYa, |a| =k (19.3)

where the constants only depend on p, N,m. In particular, this shows that W;”(RN) c CH(RY)

Proof of Theorem 37. We only prove Theorem 37 for the case m = 1 to keep the notations and the argument simple. The
general case can be proven in the same way by iterating the arguments below and use higher order Taylor expansions
instead of order 1 Taylor expansions as intensively used in the following. We need to treat three cases p < N, p = N and
p>N.

1. Assume p < N (Sobolev, Gagliardo, Nirenberg Theorem)

The proof of this fact is based on the following lemma.
Lemma 52. Let N > 2 and let ui, us, ..., uny € Ly_1(RN71). For any x € RN, we define
u(z) = uy (M) ug (@) . uy (V)
where ©(1) = (X1, Ti1,Tig1,---,2N). Then, ue Li(RYN) and
N
1 Ifill oy 1)

[ul L, @y <

%

Proof of Lemma 52. We prove the result by induction on N. If N = 2, Fubini’s theorem applies immediately to the
product uq(z2)uz(x1). For N = 3, we see that

| tut@ldes = [ fur(os,za) Jus(er,aa)Jus a1, 02) dy
R R

1/2 1/2
< lus(x1,2)| (f |u1<x2,a:3>|2dx3) ( | |u2<x1,x3>|2dx3)
R R

Then integrating with respect to xo and applying again the Cauchy-Schwarz inequality for the two functions us and
(§g udxs)l/?, we get

1/2 1/2
[ 1o idzadas < fusf .z (f |u2<x1,x3>|2dx3) (j |u3<x1,xz>|2dx2) .
R2 R R
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Integrating one last time We get Jlullrs < w1 L, @2 lluzl n, 2y |us| L, @2y, For the general case, we assume the result for N
and we denote by N’ = *—. Then for = (z1,...,2zy+1) and using Holder’s inequality, we get

1

’ ! N/
f lu(z)|dzy ..., dey < uniilL, @y <J lu |V Jun | Y dxl...dzN) .
RN RN

1
’ ’ N7
< sl (Tl - fuv 13 1))
N
< Jluntillny @) H lwill £y -1
i=1

Now we apply again Holder’s inequality to the functions zn11 = [u]z,@~-1). Each of these functions are in Ly (R)
since Hui”ILVN(RN,l)deH = ”“iH]LVN(RN) < 0. Then the product of these functions belong to L+ | .., 1 (R) = L1(R) and

N N
|y O y (A
Ri=1 i=1

which finishes the proof. O
We go back to the proof of Theorem 37 for ¢ = p*. For a function u € C}(RY), we see that Vi,

+o0 )
J (s, ..t xn)dt| = u(zD).

—00

lu(z1,...,zN —‘J 6ux1,...,,...,x1\/)dt’<

Then using the previous inequality for all i, we get that

i=1

So using Lemma 52 on the function []u;(z?)Y(N=1 g0 that

N N
= MO MO @) )
lu™=] L, wry < < H” Ly_1(RN-1) H‘u’ “ Li(RN-1) < HH@ s HL (R®Y)
Ll(RN) =1 =1 i=1
Finally, we proved that
N
Hu”LN/(N,l)(RN) H ”a ’u’HLl(]RN . (194)
=1

To get freedom, we use the last inequality for the function |u|*~!u for a ¢ that we chose later. So that the partial derivative
of this function are given by t|u|'~'0;u. Using again Holder’s inequality, we get that

N

t t—1 *

ol = [T a) < 6 Il 0l vy < IS oy L1000l vy (19.5)
i=1 =1

where p and p’ are linked by the equation p~! +p'~! = 1. Since the choice of t is still open, we can equalize the two norms

over u that appear in the last inequality by taking tN/(N — 1) = (1 — t)p’ which gives the value t = p*(N — 1)/N. So
rewriting the last inequality and simplifying by |lul/} . (rvy on both sides, we get
P

N N
PV = 1) . PN
ol < == [T 10wl oy < == Xl o

and then
lull @y < ClIVulp, @ny < C ||U||W]}(RN) :

We conclude the general case u € W, (RY) by taking a sequence u, — u of functions in C}(RY) by density. Then
”UnHLP* ®y)y < C Hunle(RN) and we finish the proof by using Fatou’s lemma. It remains to show that for any ¢ € [p, p*),
P

the same bound holds. For this purpose, since p < ¢ < p*, then one can find a 0 < o < 1 such that

1 a 1—«a

q p p*

Then, by the interpolation inequality (in Theorem 39), one have that [uf., < [u]f, HuHIL_;Y < Julz, + ulz,. < (C+
P
1) |ullyy+ which finishes the proof.
P
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2. Assume p = N

Moving back to (19.5), we have that, for ¢t > 1
” ||LtN/(N nH(RN) = tH ‘L(f HN/(N—1)(RY) HVUHLN(RN)
then using that (a'~'b)"/* < a + b, we get that

H“HLW/(N,I)(RN) < C(H“HL(t,1>N/<N,1)(RN) + HVUHLN(]RN))'
This last inequality is recursive and we see that a higher L, norm of u is bounded by a lower L, norm plus an extra term
that involves Vu. The initialization ¢ = N shows that |u]r < CHUHWPI, then applying the previous inequality
tot=N+1,N+2,...,N + k, we end up with ”u”LNZ/(N—IH»IcN/(N—l)(R )y < C’k“HuHWPl. For any ¢ > N, there exists k

such that ¢ < N?/(N —1) + kN /(N —1). Since, we obviously have that Ly (RY) c WL (RY), the interpolation inequality
of Theorem 39 shows that,

N2/(N—1)(RN)

lullp, @~y < Clulw: @)
where the constant C' only depends on N and gq.

3. Assume p > N (Morrey’s Theorem)

Step 1: We prove that for any u € C}(RY), we have that for any cube Q of side a that contains 0, we have that
N
[u(0) —ug| < Ca'™ 7| VulL,q) (19.6)
where Tg holds for the means value over (). For this purpose we use the fundamental
'd
u(z) — u(0) = J &u(tx)dt

But then, for any = € @,
|u(z JZ|$Z||8ut:17|dt aZJ|&ut:1:|dt

So taking the mean, given by the operator u — |Q|~* SQ u, we get that
N ooy Ny
u(0) —up| < a J—J oiu(tx)| dx dt = a Jif oiu(x)|dx dt
u(0) —ug| ;o\Ql QI (tz)| ;()tN|Q| tQI ()]
N 1 z 1-4 N(1-1) 1
a P QY a’ J N
< — oiu(x pdx) dt = Vu t~ e dt
a2 ], ([ e . IVl [

1
1—

_N
a' =7 |Vl @)

S|z

where we used that since 0 is in @, then for any 0 < ¢ < 1, we have the inclusion tQ < Q. Hence, (19.6) is proved with
C=(1-N/p)~!

Step 2: We can generalize (19.6) and show that for any u € V[/p1 (RN), almost any = € RY and any cube Q of side a that
contains ,

_ N
lu(z) —Tg| < Cal~ > IVulz, @) (19.7)

by using a translation and the density (that holds both a.e. and for the norm W, (R™)) of the functions C}(R") inside
W (RN).

Step 3: We now prove (19.2) and (19.3) by using (19.7). To have (19.3), it enough to see that one can find a cube of side
|z — y| that both contains  and y. Since we also have that [Vul, @) < |ulwi(q) < |u[w)®y). To see (19.2), we use

the fact that for almost every x € RY we can define a cube @ of side 1 (and hence of volume 1) that contains = and
lu(@)| < [ug| + CIVulL, @) < lulr,@ + ClVulr,@ < Clulw: @) < Clulw; @)

And so almost u is bounded by Cllully1®~) almost everywhere which is exactly (19.2). O
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19.2.2 The case () bounded and regular

The idea of this section is to state a theorem that is an analog of Theorem 37 for a bounded subset of R"V. The fact that
we work with functional sets that involve some regularity on the functions that we consider, imposes to have a certain
kind of regularity on the boundary of ). This regularity condition (defined in Definition [XXX]) is a sufficient condition
to create an extension of the function f e W,"(Q2) to the entire set R so that f e W,*(RY).

Definition 25. Let Q be an open set of RV . For x € RN, we write v = (2/,xxn) where ' € RN™1 and xn € R. We denote
by | - | the Euclidean norm and

1. RY ={z:2n >0},

2.C={x:|2| <1 and |xn| <1},

8. Cy =CnRY,

4. Co={z:|2'| <1 and zy = 0}.
We say that the open set Q2 is of boundary C' if Vo € 09, there exists a neighborhood O of x in RN and there exists a
one-to-one mapping S : C' — O such that

1. Se CY(C) and S~ € C*(O) (locally a diffeomorphism),

2. 5(C1)=0nQ and S(Cp) = O n 9.

This definition is very natural when one is familiar with the notion of maps in the terminology of C' manifolds. The
requirements on the local map S are the one that make the frontier 092 a sub-manifold of RY of class C'. This allows to
work on the neighborhood of the frontier of 2 as if we where looking at a piece of RN ~!. This definition allows us to use
the following technical result that is a extension theorem.

Theorem 38 (Linear extension operator). Assume that Q c RY is a bounded open set of boundary C* or that Q is a cube
of RN. Then there exists a linear operator P : W} (Q) — W2 (RN) such that for any ue W2(Q), Puy, = u (estension of
u) and

1Pullweyy < Cllulwy e
where the constant C only depends on the open set €.

Proof. Admitted! O

At the possible cost of disappointing the reader, we decided not to prove this technical result in these notes. The proof
is based on a reflection idea where one can define u outside of €2 by symmetry. The case is simple when the open set in
question is a cylindra C defined as in Definition 25. The general case is handled thanks to the rectification given by the
local maps S. Obviously this sounds rapid since there is possibly as many local maps as points x € 092 but the assumption
that Q is bounded gives that the boundary is in fact a compact set of RY and so, it is possible to restrict ourselves to
a finite number of local maps. The final step consists in gluing the extensions given by the reflection extensions given
locally thanks to a unit partitioning scheme. These three ideas are not fundamentally hard but involve enough technical
issues that fall beyond the scope of these notes.

Corollary 14 (Embedding IT). Assume that  is a bounded open set of boundary of class C* or that Q is a cube of RV.
Let 1 < p < o0, then

1. if% — % >0, then W;”(Q) c Ly(Q) for any q € [p, p*| where z%* _

1_m
p N’

2. if% — % =0, then W () < Ly(Q) for any q € [p, +0),

3. if 5 — R <0, then W, (Q) < Lo (),
in this last case, the same conclusion holds for the continuous representatives of the functions in W];”(Q) as in Theorem
37.
Proof. This is a direct use of Theorem 38. O

19.2.3 Basic facts on L, inequalities and density
Theorem 39 (Interpolation inequality). For a function f € L,(2) n Lqy(Q2) where 1 < p < ¢ < 0, then f e L.(Q) for all
p < 1 < q and we have the interpolation inequality
11—«
q
Proof. This is a direct consequence of Holder’s inequality. O

and 0<a<l1.

N ~ 1
1£lz, @ < W12, @l fl G for - ==+

=R



Chapter 20

Tareas

20.1 Tarea 1

Esa tarea esta dividida en problemas independientes. Fecha limite de entrega : 09/03 /2020

Problema 1 (Alrededor de funciones caracteristicas) Sea Z una variable uniforme sobre [—1,1].
1. Calcular la funcién caracteristica de Z.
2. Mostrar que no se puede encontrar variables i.i.d. X,Y tal que X —Y ~ Z.
Sea f : t — aeb(It+e)”
3. Mostrar que f es una funcién caracteristica por ciertas constantes a, b, c. Describir la distribucién corespondiente.

«@ ., . .
4. Mostrar que t — e~ !I” por & > 2 no puede ser una funcién carateristica.

Problema 2 (Condiciones de Lindeberg-Feller) Sean X; ~ U[—a;,a;] variables uniformes independientes con
Vi, a; < a < 0.

1. Mostrar que las condiciones de Lindeberg-Feller se cumplen por la sucesion (X;); si y solo si >, a? = o
Sean X; ~ Exp()\;) y supongamos que (maxi<i<n A7)/ >y A7 — 0.

2. Mostrar que bajo la buena standardizacion (de media y varianza), la suma ). X; converge a N (0,1).

Problema 3 (Aplicacién de Slutsky)

1. Sean X,, y Y,, variables aleatorias independientes de Poisson de parametros n y m. Que distribucion limite tiene
X»—=Ym—(n—m)

n — 007
Xy cua do n,m

Problema 4 (Uniforme integrabilidad) Supongamos dadas unas variables reales positivas X, ..., X, i.i.d. Deno-
tamos X(1), ..., X(,) las estadisticas de orden.

1. Mostrar que si E [Xf] < o0, se cumple

e E[x}].

E[xXb)] < oo

2. Mostrar que si E [X?] < o0, la sucesion (n~'X(,)), es uniformemente integrable.

Sea (X,), una sucesion de variables reales. Sea f : Ry — R, una funcién no decreciente tal que f(;) — 400,
n—o0

Supongamos que E [sup,, f(|X,|)] < 0.

3. Mostrar que (X,,), es una sucesion uniformemente integrable.

123
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20.2 Tarea 2

In this tarea se busca comparar la técnica de ‘regular chaining’ con la de ‘generic chaining’. La fecha de entrega de la
tarea es el 06,/04/2020.

En lo que sigue, T es un espacio métrico y llamamos d la distancia asociada. Digamos que una sucesion (A,), de
particiones crecientes (i.e. A, c A,11) de T es admisible si |A,| < 22" =: N,, para cadan > 1y |4g| = 1. Por un
elemento ¢ € T, se denota A(t) el unico elemento de A,, que contiene ¢. Usaremos la notacion A(A) para designar el
diametro de A € A,,.

1. Sea (A,) una sucesion admisible y B,, = A,—1 x A, sin =1y B_y = By = {T'} x {T'}. Mostrar que (B,—1)n>0 €8s
admisible por el espacio T' x T.

2. Mostrar que si dos sucesiones 3,, y C,, son admisibles entonces la sucesion A,, de las particiones dondes los elementos
son de la forma B nC con Be B,,_1 y C €(C,_1 y tal que Ay = {T'} es admisible.

3. Dado una sucesion admisible (A, )., decir como construir mapeos I, : T'— A,, tal que YVt e T

AL, (1), L4 (1)) < A(A(1)).

4. Sea (Xi)ter un proceso de incrementos sub-Gaussianos y tal que V¢ € T, E[X;] = 0. Mostrar que Vn > 0 y

Yu > +/2log 2,

X X

P (sup g1 () — A Ia(t) u2n/2) < Npsio eXp<_u22n) < eXp<_u22n—1)-
teT An(t))

2

(
Mostrar que 3,2 exp(—u2""1) < 3,2, exp(—45n) < Zexp(—%).

5. Usando 4., mostrar que

P (Vt eT, Xy <u 2 2”/2A(An(t))> > 1 — 2exp(—u?/2)

n=0

y deducir que existe una constante L > 0 universal tal que

E X | <L f on/2 A(A,
|:i271? t:| An aldrrlnlslble te’]l? TLZ:O ( ))

Esa cota se llama cota de generic chaining.

6. Para cada n, definimos e, = inf 4 sup; A(A,(t)). Mostrar que e, = 2inf{c : N(¢,T,d) < N,}. Deducir que existe
una constante universal C' tal que

0
inf sup > 2"2A(A < ) 2%, < cf \/1og N (e, T, d)de.
0

A, admisible ;7 "0 "0

La cota de generic chaining es mejor que la cota de Dudley.

7. Sea (a;);>1 una sucesion t.q. a; > 0, definimos el elipsoide

+2
2, § L

Sea (gi)i>1 una sucesion i.i.d. de variables Gaussianas estandares. Consideramos el proceso X; = >}, t;g;. Mostrar

que
1/2 1/2
E [sup Xt} < (2 af) <2 2"a2n> .

teT i>1 n>0

8. En esa pregunta queremos probar que el orden de Y}, _,2"/?¢,, is of order larger than (3, _,2"a3.)"/?. Sea

n 12
2™, —
Sn—{teR it; >0y E azzl}.

(a) Mostrar que e, (&) < en(E).
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(b) Sea B la bola unitaria Euclidiana de R%", sea T c &, un conjunto finito t.q |T| < N,, y sea e > 0. Mostrar que
Vol (User(eB + 1)) < (2¢)2" Vol(B).

(c) Mostrar que Vol(E,) = a3, Vol(B). Deducir que &, € User(eB +1) = 2¢ = agn.

(d) Finalmente, probar que e, (€) = azn/2 y concluir.

En generalidad completa, la cantidad inf 4, admisible SUDser D=0 2"/2A(A,(t)) siempre tiene el orden de magnitud correcto
aun que la cota de Dudley es demasiado conservativa.
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20.3 Tarea 3

Digamos que una funcion f : X™ — [0, 00) tiene la propiedad de ser acotada por si misma si para cada i existe una funcion
fi: X" — R tal que
0< f(z1,...,zn) — filT1, s Tic1, Tig1s - Tn) < 1

f(x17"'7x’n)_fi(x17"'7xi717x’i+17"'"rn) <f($1,...,$n).
1

n
1=

Notaciones :
1. Ent(X) = E[X log X] — EX log(EX)
2. XD = (Xq,..., X1, Xiz1,..-, Xn) y EOL] = E[| X®].
3. Ent¥(X) = EOD[X log X] — ED X log(ED X).
4. ¢p(u) =e"—1—u.
5. Yz-5z(A) = logE [eMNZ~ED)]

Se admite la desigualdad de sub-aditividad de entropias : Ent(Z) < E}" , Ent®(2).

P.1 Sea I < R un intervalo abierto y f : I — R una funcién convexa y derivable. Sea X una variable tal que X € I.
Mostrar que

E[f(X) — f(EX)] = nf E[f(X) — f(a) — f'(a)(X — a)]

ael
P.2 Sea Y una variable no negativa tal que E [Y log Y] < c0. Mostrar que

Ent(Y) = 11};%1%2 [Y(logY —logu) — (Y —u)].

P.3 Sea Z; una funcién de las variables en X (). Mostrar que

Ent® (*) < EO [eMo(—A\(Z - Z,))].

P.4 Mostrar que

P.5 Justificar que VA € Ry Yu € [0,1], ¢(—Au) < up(—A). Sea Z = f(Xq,...,X,) donde f es acotada por si misma.

Deducir la desigualdad diferencial
V752N -2
— | <EZ-
( er—1 er—1

P.6 Mostrar que logE [eM?~E9) ] < $(MEZ y que P(Z > EZ +t) < exp (—W)

Una variable definida por una funcién acotada por si misma se concentra.
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Preguntas opcionales :

Una propiedad II definida sobre una union finita de productos de un conjunto X es una secuencia Ily,... I, tal que
I, c X,...,II,, € X". Digamos que la (z1,...,z,,) € X™ satisface la propiedad II si (z1, ..., %) € II,,. Una propiedad
es hereditaria si por cada secuencia (1, ..., %) que satisfaga la propiedad II cada sub-secuencia (z;, , . . ., z;, ) satisface II.

P’.1 (Ejercicios Hora 3) Sea f acotada por si misma y Z = f(Xi,...,X,) donde los X; son variables aleatorias inde-
pendientes. Mostrar que Var(Z) < EZ.

P’.2 Sea II una propiedad hereditaria. Para cada (z1,...,2), se asocia el tamano méximo de una sub-secuencia de
(z1,...,2m) que satisfaga II. Denotamos fri(x1,..., %) este valor. Mostrar que fi1 es acotada por si misma.

Una funcion f tal que existe una propiedad II tal que f = fi se llama funcidn de configuracion.

P’.3 Sean Xi,...,X, ii.d. discretas. Sea Z el numero de valores distintos que tomen las variables X1,..., X,,. Mostrar
que Z es una funcién de configuraciéon de las Xi,..., X,.

P’.4 (Utilizamos las notaciones de la tarea 2) Para una clase A de subconjuntos de R? y elementos z1,...,z, € R?,
digamos que A rompe (z1,...,2,) si [[A(z])| = 2". Denotamos VC(A, z7) el tamano maximo de una sub-secuencia de
(z1,...,2,) que estd rota por A. Mostrar que este nociéon de dimension VC es una funcién de configuracion.
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20.4 Tarea 4

El objectivo de esta tarea es investigar condiciones sobre distribuciones para que éstas sean definidas en forma tnica por
sus momentos. Dada una medida p, definimos para cada p € N, el momento de orden p como

tp = prdp.

Denotamos como M(R) al conjunto de medidas de probabilidad sobre R que tienen momentos finitos de cualquier orden
y M(R,) las medidas de probabilidad sobre R que tienen momentos finitos de cualquier orden. Dada una sucesion real
m = (M) peN, S€an

K(m) ={pe M(R):VpeN,pu, =m,} (Problema de Hamburger)

K*(m)={pe M(Ry):VpeN,p, =m,} (Problema de Stieljes)

las soluciones de los problemas de momentos de Hamburger y de Stieljes. Decimos que una variable aleatoria X con
sucesion de momentos m es dnicamente definida por sus momentos (UDM) si K (1) tiene un tnico elemento.

P.1 Mostrar que una variable aleatoria X tal que E[X] =0, E[X?] =1y E[X*] = 1 es igual (en distribucién) a una
variable de Rademacher (que vale 1 con probabilidad % y —1 con probabilidad %) Dar un ejemplo de secuencia m tal que

K(m) = .
En el siguiente, suponemos que m es tal que K(m) # .

P.2 Sea X una variable aleatoria de medida p € M(R) de soporte finito y sea m la sucesiéon de los momentos p, de p.
Mostrar que X es UDM. Pista : Para mostrar que Y, z;x? = 0 implica Vi, z; = 0 considere una formulacion matricial y
use el determinante de Vandermonde.

Mostrar que, efectivamente, X es UDM pq, po, ..., o, donde n es el numero de dtomos de p.

P.3 Suponemos que pu es de soporte compacto. Usar el teorema de Portmanteau para probar que X es UDM.

P.4 Una variable beta («, 3) es una variable aleatoria de densidad sobre [0, 1] igual a
F(CY + B) xa—l
I'(a)l'(B)

Calcular los momentos de una variable beta («, 3). ;Qué podemos decir de una sucesion (X,,),, de variables aleatorias tal
que para cada p € N tenemos

OF (1—a) .

p—1 .

o+
E[XP] — ||77
[ n]n%+wi=0a+5+i

Recordamos el siguiente teorema :

Teorema Una funcién holomorfa en un abierto U que vale 0 sobre un conjunto que tiene un punto de acumulacién de
U es nula sobre todo U. Los interesados pueden encontrar el teorema y su prueba en el libro: Real and Complex analysis,
1987, W. Rudin

P.5.a Mostrar que para cada w > 0 y cada z € C tal que R(z) > 0 (parte real es positiva),

+0o0 1
J‘ tw_le_tht = TP(U})
0 z
P.5.b Seag:R— R,

_ 2 —2/3 2/3 (T 2/3
9(2) = g el exp(—[al?*) cos (5 + VBJal)

Mostrar que para cada p € N,

+oo
J zPg(z)dz = 0.

—00
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P.5.c Sea f:R+— R la funciéon de densidad

1
ENG

Mostrar que para p € [0,1/2], f + pg es una funciéon de densidad y que para cada p € N,

| 7% exp (| [*7%).

f(x)

+o© +o0
| errae= [ ars 4 po)a)ds
-0 -0
Deducir que X, cuya densidad es f, no es UDM.

P.5.d Sea m tal que si p es par m, = 0y si p es impar m, = (3p —1)(3p — 3) ... 1. {Qué podemos decir de K (m)?
P.6.a Mostrar que K(m) es un conjunto convexo.

P.6.b Mostrar que K(m) es un conjunto compacto.

P.7 Mostrar lo siguiente:

Proposiciéon Sea X una variable aleatoria sobre R de medida de probabilidad u € M(R). Suponemos que la se-

rie de Laplace
I p

|
p>1 P

es de radio de convergencia no nulo, entonces X es UDM.
P.8.a Calcular el radio de convergencia de la serie de Laplace para X una variable N'(0,1). Deducir que X es UDM.

P.8.b Calcular los momentos de Y = exp(N), donde N ~ N (0,1). ;Qué el radio de convergencia de la serie de Laplace?
Admitimos el teorema siguiente:

Teorema Sea X una variable de densidad f positiva sobre R, . Si

f”o —log f(t)

dt < 40,
0 1+¢2

entonces X no es UDM.
P.9.a Mostrar que la variable aleatoria Y definida en P.8.b no es UDM.

P.9.b Sea Z = W3 donde W es una variable aleatoria exponencial de parametro 1. Mostrar que Z no es UDM.
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