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Chapter 1

Preface

These notes, were essentially written during the first two years of my doctoral course at CIMAT, Mexico. As a student, I
had the chance to have access to very well designed courses notes from my professors at the ENS Cachan and Université
Paris Saclay which helped at lot in the learning process. This work is written in a way that it is as self-contained as I
possibly achieved to, to quickly familiarize students with the beautiful notions around empirical processes and Dudley
entropy theory.
These themes cannot be tackled without a quick tour by the classical convergence theorems in finite dimension spaces -
where we speak about random vectors. This guided tour passes also rapidly through the simple 1D world as a excuse to
look deeper into the important definitions in probability theory.
As a pedagogic material, this notebook pretends - I am aware of the gluttony for real life illustration asked by my students
- to give enough instructive examples to get our hands on motivating application problems. [To continue]

Prerequisities: We assume known the following notions.

• Basic definitions of mathematical tools (sequences, integrals, limits, continuity, topology, limsup, liminf)

• σ-algebras, measurability, measures, probability measures, random variable, expected value, variance, independence,
distributions.

• Classical theorems of integration (Monotone convergence, Dominated convergence, Fatou’s Lemma,...)

• Classical distributions (Bernoulli, Binomial, Poisson, Exponential, Normal)

1.1 Notations and definitions
Vector space of finite dimension Let E be a vector space of finite dimension. As real vector spaces of same dimension
are (linearly) equivalents, we will assume E = Rk for some k ∈ N fixed one and for all as it permits us to simplify our
notations.

Sets of functions We denote by Cb(Rk) the set of continuous and bounded functions f : Rk 7→ R. For a measure µ on
Rk and p ≥ 1, we denote by Lp(Rk, µ) the set of measurable functions f : Rk → R such that

∫
|f |pdµ < +∞. If µ is the

Lebesgue measure on Rk, the set Lp(Rk, µ) will be simply denoted by Lp(Rk).
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Part I

Probability
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Chapter 2

Convergence of random variables

The purpose of this chapter is to prepare the reader to enter in the field of empirical processes slowly by stating and
proving the famous theorems as Law of Large Numbers (LLN) or Central Limit Theorem (CLT) which have made the
popularity of Probability theory in the last century. A lot of this chapter is inspired by the excellent [9].

2.1 Modes of convergence

Definition 1. A random vector is a random variable X : Ω 7→ Rk where we implicitly associated to Ω and Rk (with
k ∈ N∗) their respective Borelian σ-algebra. A sequence of random vectors will be usually denoted by (Xn)n∈N ∈ (Rk)N.

Definition 2. Let (Xn)n∈N ∈ (Rk)N be a sequence of random vectors and X a random vector in Rk. Their respective
probability measures are denoted by µn and µ. Let d be a distance on Rk and ‖ · ‖ be the usual norm on Rk. We say that,

1. (Xn)n∈N converges in probability to X, denoted by Xn
P−→ X if ∀ε > 0, P (d(Xn, X) > ε) −→

n→∞
0.

2. (Xn)n∈N converges in distribution or weakly to X, denoted by Xn
(d)−→ X or Xn

(w)−→ X if ∀h ∈ Cb(Rk),
∫
hdµn −→

n→∞∫
hdµ.

3. (Xn)n∈N converges in almost surely to X, denoted by Xn
a.s.−→ X if ∃Γ ⊂ Ω,∀ω ∈ Γ, Xn(ω) −→

n→∞
X(ω) and Γc is

negligible.

4. (Xn)n∈N converges in Lp to X, denoted by Xn
Lp−→ X if

∀n ∈ N, E [‖Xn‖p] < +∞ and E [‖Xn −X‖p] −→
n→∞

0.

5. (Xn)n∈N converges in total variation to X, denoted Xn
TV−→ X, if supB |P (Xn ∈ B) − P (X ∈ B) | −→

n→∞
0, where

the supremum is taken over the set of Borelian measurable sets B.

Remarks

• In 2., it is not required to have the random variables Xn and X to live in the same probability space whereas the
other four type of convergence do require this fact.

• In 4., the triangular inequality implies E [‖X‖p] < +∞.

• In the convergence in probability, since we are dealing with Rk (a vector space of finite dimension), all the distances
are equivalent. This is to say, for any two distances d and d′ on Rk, there exists c, C > 0 such that, for every
x, y ∈ Rk

cd′(x, y) ≤ d(x, y) ≤ Cd′(x, y).

It implies that the notion of probability convergence that we consider is not dependent on the chosen distance. When
not specified differently, we will always consider the euclidean distance.

The following Lemma simplifies the task of proving weak convergence and will be a key tool for the upcoming results.

Lemma 1 (Portmanteau). Let (Xn)n∈N and X be random vectors. The following properties are equivalent:

9
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i) Xn
(d)−→ X

ii) ∀f function Lipschitz and bounded, E [f(Xn)] −→
n→∞

E [f(X)].

iii) ∀F closed set, lim supP (Xn ∈ F ) ≤ P (X ∈ F ).

iv) ∀G open set, lim inf P (Xn ∈ G) ≥ P (X ∈ G).

v) ∀A Borelian s.t. P (X ∈ ∂A) = 0, P (Xn ∈ A) −→
n→∞

P (X ∈ A).

Proof. i) =⇒ ii) is obvious since Lipschitz bounded functions are in particular continuous and bounded.
ii) =⇒ iv) Let fk(x) = min(kd(x,Gc), 1). This function is Lipschitz by the Lipschitzness of the distance. It is obviously
bounded. Moreover, for every x, fk(x) converges increasingly to 1G(x). Hence,

lim inf
n

P (Xn ∈ G) ≥ lim inf
n

E [fk(Xn)]
by ii)
= E [fk(X)] −→

k→∞
P (X ∈ G)

where the last fact holds by monotone convergence.
iii)⇔ iv) is obvious by completion.
iii) + iv) =⇒ v) Take any Borelian set such that P (X ∈ ∂A) = 0. Then, using iii) for the closed A and iv) for Å, we get

lim supP (Xn ∈ A) ≤ lim supP
(
Xn ∈ A

)
≤ P

(
X ∈ A

)
.

≤ =

lim infP (Xn ∈ A) ≥ lim inf P
(
Xn ∈ Å

)
≥ P

(
X ∈ Å

)
.

This chain of inequalities finally imply that

P (Xn ∈ A) −→
n→∞

P (X ∈ A) .

v) =⇒ iii) Let F be a closed set of Rk and define for any β > 0,

Fβ = {x : d(x, F ) ≤ β}.

The elements of the familly (∂Fβ)β>0 are disjoint. Then∑
β>0

P (X ∈ ∂Fβ) ≤ P
(
X ∈ Rk

)
= 1.

The previous convergence has to be understood as the sumable (see Definition 11 and Proposition 15) then the sum has
only finite number of non zero terms:

{β > 0 : P (X ∈ ∂Fβ 6= 0) is a countable set.

From that we can define a sequence (βk)k such that βk → 0 and such that

∀k ∈ N, P (X ∈ ∂Fβk) = 0.

Then
lim sup
n→+∞

P (Xn ∈ F ) ≤ lim sup
n→+∞

P (Xn ∈ Fβk) = lim
n→+∞

P (Xn ∈ Fβk) =
by v)

P (X ∈ Fβk) .

We finish by taking the infimum in k.
iii) =⇒ i) Let 0 < f < 1 be a continuous function. Using the classical (15.4) and Fatou Lemma, we get

lim supE [f(Xn)] ≤
∫ 1

0

lim supP (f(Xn) ≥ x) dx

≤
by iii)

∫ 1

0

P (f(X) ≥ x) dx = E [f(X)] .

We used that the set {f(Xn) ≥ x} = {Xn ∈ f−1([x,+∞)} where the set f−1([x,+∞) is the inverse of a closed set and is
then closed by continuity of f . Applying the same ideas for 1− f gives the convergence

E [f(Xn)] −→
n→∞

E [f(X)] .

Then the general case follows from this by using the transform g := f−a
b−a for a < f < b.
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Many of the convergences of interest are robust under a continuous transformation. Precisely, we have the

Theorem 1 (Continuous transformation). Let g : Rk → Rm be a continuous function. Then,

• If Xn
(d)−→ X, then g(Xn)

(d)−→ g(X).

• If Xn
P−→ X, then g(Xn)

P−→ g(X).

• If Xn
a.s.−→ X, then g(Xn)

a.s.−→ g(X).

One could be interested in a result where g is only assumed to be continuous except on a specific set of points. The results
are still true in this context if one assumes that this set of problematic points is not seen by the random variable X.

Proof. We prove in order:

• Let F be a closed set in Rm. Then,

lim supP (g(Xn) ∈ F ) = lim supP
(
Xn ∈ g−1(F )

)
≤ P

(
X ∈ g−1(F )

)
= P (g(X) ∈ F ) .

which implies the weak convergence.

• Let ε > 0 and δ > 0. We can decompose

P (d(g(Xn), g(X)) > ε) ≤ P (d(g(Xn), g(X)) > ε and d(Xn, X) ≤ δ) −→
δ→0

0

+P (d(Xn, X) > δ)︸ ︷︷ ︸
−→
n→∞

0, ∀δ>0

This proves the convergence in probability.

• The almost sure convergence is obvious since it occurs on the same measurable set of probability 1.

2.1.1 Uniform integrability
Definition 3. We say that a family C of random variables are uniformly integrable at order p (denoted U.I.) if
∀ε > 0, ∃K ∈ [0; +∞) such that

E
[
‖X‖p1‖X‖>K

]
≤ ε, ∀X ∈ C.

When p = 1 we omit to say “of order 1”.

A U.I. family is bounded in Lp Take ε = 1 and we denote by K the constant defined in Definition 3. Then, for any
element X ∈ C, we have that

E [‖X‖p] ≤ E
[
‖X‖p1‖X‖p>K

]
+ E

[
‖X‖p1‖X‖p≤K

]
≤ 1 +K.

Then a family that is uniformly integrable is, in particular, bounded in Lp. Besides the following example allows us to see
that the converse is not true.

Exercice 1. Let Xn = n1[0,n−1). Show that E [Xn] = 1 and that (Xn)n is not U.I.

Sufficient conditions for U.I. There is two very simple sufficient conditions for uniform integrability that we state
now.

Proposition 1. If either

• The family C is bounded in Lp′ for p′ > p

• The family C is bounded by a random variable Y ∈ Lp

then C is uniformly integrable of order p.

Theorem 2 (Implication of convergences). We have the following implications for Xn and X random vectors in Rd.
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(d)

P

a.s. Lp

the limit
is constant

Dominated convergence

∃nk a sub-
sequence

Uniform
Integrability

The doubled arrows hold for direct consequences whereas the simple arrows hold with an extra assumption or in a weaker
version has specified by the text aside. More specifically, we have the following results.

1. Assume that Xn
a.s.−→ X and that there exists a random vector Y such that ‖Xn‖ ≤ ‖Y ‖ for any n then Xn

Lp−→ X.

2. Assume that Xn
P−→ X then there exists a sub-sequence (nk)k such that Xnk

a.s.−→ X.

3. Assume that Xn
P−→ X and that the familly (Xn)n is uniformly integrable at order p then Xn

Lp−→ X.

4. Assume that Xn
(d)−→ c where c is deterministic, then Xn

P−→ c.

Proof. a.s. =⇒ P: We assume that Xn
a.s.−→ X.

0 = P (∃ a sub-sequence nk s.t. ∀k, |Xnk −X| > ε)

= P (lim sup {|Xn −X| > ε}) (seen as events)
≥ lim sup P (|Xn −X| > ε) (Fatou for events)

and then P (|Xn −X| > ε)→ 0 for any ε > 0.
P =⇒ (d): Let f be a λ-Lipschitz function bounded by a constant K, then

|E [f(Xn)]− E [f(X)] | ≤ E
[
|f(Xn)− f(X)|1|Xn−X|≤ε

]
+ 2KP (|Xn −X| > ε)

≤ λε+ 2KP (|Xn −X| > ε)

The convergence in probability allows us to choose n large enough to get P (|Xn −X| > ε) ≤ ε. Then |E [f(Xn)] −
E [f(X)] | ≤ (λ+2K)ε which shows that E [f(Xn)]→ E [f(X)]. We conclude using Lemma 1 to get the weak convergence.
Lp =⇒ P: By the Markov’s inequality,

P (‖Xn −X‖ > ε) ≤ E [‖Xn −X‖p]
εp

−→
n→∞

0

1. a.s. → Lp is the direct consequence of the dominated convergence theorem. Indeed, by the bounded condition, X is in
Lp and ‖X‖ ≤ ‖Y ‖. Then we get

‖Xn −X‖ ≤ ‖Y ‖+ ‖X‖ ≤ 2‖Y ‖

which is in Lp. Using, the dominated convergence theorem for the sequence (‖Xn −X‖p)n finally gives the result.
2. P→ a.s. This fact results from an interesting result in itself that we postpone to Lemma 26.
3. P→ Lp For simplicity, we show the result for p = 1 and Xn ∈ R since the generalization to any p and Xn ∈ Rk is
straightforward. Let φK : R→ [−K,K] such that

φK :=

 K if x > K
x if |x| ≤ K
−K if x < −K

.

Let ε > 0. Since the family (Xn)n is U.I., there exists K > 0 such that

E [|φK(Xn)−Xn|] <
ε

3
∀n ≥ 0,

and
E [|φK(X)−X|] < ε

3
.
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By construction φk is 1-Lipschitz i.e. ∀x, y, |φK(x)− φK(y)| ≤ |x− y| then by the continuous transformation

φK(Xn)
P−→ φK(X).

We can use the dominated convergence theorem (see Lemma 17) since φK(Xn) and φK(X) are bounded (and then
integrable) to see that there exists n0 such that ∀n ≥ n0,

E [|φK(Xn)− φK(X)|] < ε

3
.

Summing up, we get

E [|Xn −X|] ≤ E [|Xn − φK(Xn)|] + E [|φK(Xn)− φK(X)|] + E [|φK(X)−X|] < ε.

Then Xn
Lp−→ X.

4. (d) → P Let B(c, ε) be the open ball of radius ε centered at c. Then P (d(Xn, c) ≥ ε) = P (Xn ∈ B(c, ε)c), but

lim supP (Xn ∈ B(c, ε)c) ≤ P (c ∈ B(c, ε)c) = 0,

by the lemma Portmanteau. Hence, P (d(Xn, c) ≥ ε)→ 0 and Xn
P−→ c.

Two exercises about probability convergence

Exercice 2. Define the sequence of random variables on the probability triplet ((0, 1],B((0, 1]),Leb),

Y1 = 1(0,1]

Y2 = 1(0,1/2], Y3 = 1(1/2,1]

Y4 = 1(0,1/4], Y5 = 1(1/4,1/2], Y6 = 1(1/2,3/4], Y7 = 1(3/4,1]

· · ·

Show that this sequence is such that Yn
P−→ 0 but has no almost sure limit. We list its basic properties in the following

proposition.

Exercice 3. Let Xn be a sequence of random variables that converges in probability towards a random variable X. Assume
that ∀n ∈ N, Xn ≤ Xn+1. Show that Xn

a.s.−→ X. Hint: Use 2. of Theorem 2.

Comments In fact the convergence Lp implies a little more than the convergence in probability. It also implies the
uniform integrability as pledged in Exercice 4.

Exercice 4 (Lp =⇒ U.I.). Assume that Xn
Lp−→ X. We show in that exercise that (Xn)n is uniformly integrable of order

p.

1. Let ε > 0. Show that there exists N ∈ N such that ∀n ≥ N , E [‖Xn −X‖p] ≤ ε/2p.

2. Apply Proposition 16 to show that we can choose δ > 0 such that for any E ∈ B such that P (E) < δ, we have

E [‖Xn‖p1E ] ≤ ε/2p−1, ∀n ≤ N and E [‖X‖p1E ] ≤ ε/2p

3. Taking K such that K−1 supn E [‖Xn‖p] ≤ δ, show that (Xn)n is U.I. using that,

E [‖Xn‖p1‖Xn‖ > K] ≤ 2p−1E
[
‖X‖1‖Xn‖>K

]
+ 2p−1E [‖Xn −X‖p] ,

(We may use Lemma 11) for n > N and question 2. for n ≤ N .

2.1.2 Simultaneous convergence

In this section, we deal with the simultaneous convergence of two random variables Xn and Yn when it is known that
they marginally converge to two random variables X and Y . Combining their convergence is not that direct, especially
for weak convergence. In the following, the famous Slutsky Lemma is also presented as an optimal result in this direction.
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Convergence almost sure Almost nothing is needed to say here. Indeed, considering the intersection of the two
measurable sets on which Xn(ω)→ X(ω) and Yn(ω)→ Y (ω) results another set of probability one where simultaneously
the two convergences occur. Simultaneous convergence being equivalent to convergence for the sequence of couples in
product spaces gives the result. We keep that in mind under the short,

Xn
a.s.−→ X and Yn

a.s.−→ Y ⇔ (Xn, Yn)
a.s.−→ (X,Y )

Convergence in probability By the fact that for x1, y1, x2, y2, we have (for the euclidean distance)

d((x1, y1), (x2, y2)) ≤ d(x1, x2) + d(y1, y2),

and for example,
d(x1, x2) ≤ d((x1, y1), (x2, y2))

then, the probability convergence transmits directly in product spaces. More precisely,

Xn
P−→ X and Yn

P−→ Y ⇔ (Xn, Yn)
P−→ (X,Y )

Slutsky Lemma

Proposition 2. Let (Xn)n and (Yn)n be two sequences of random vectors. Assume that Xn
(d)−→ X and d(Xn, Yn)

P−→ 0,

then Yn
(d)−→ X.

Proof. Let f be a 1-Lipschitz function taking values in [0, 1]. Note that imposing f to take values in [0, 1] is not restrictive
since one can always renormalize and translate a bounded function. Then,

|E [f(Xn)]− E [f(Yn)] | ≤ E
[
d(Xn, Yn)1d(Xn,Yn)≤ε

]
+ 2P (d(Xn, Yn) > ε)

≤ ε+ 2P (d(Xn, Yn) > ε)︸ ︷︷ ︸
−→
n→∞

0

.

Then, E [f(Xn)] −→
n→∞

E [f(X)] and the weak convergence is proved.

The so-called Slutsky Lemma is very useful in many areas of statistics as a powerful tool to combine the convergence of
two or more sequence of random variables to finally get the weak convergence of a possibly complex expression.

Lemma 2 (Slutsky). Assume that Xn
(d)−→ X and Yn

P−→ c where c is a constant of Rk. Then, (Xn, Yn)
(d)−→ (X, c) and

in particular we have

• Xn + Yn
(d)−→ X + c.

• YnXn
(d)−→ cX.

• Y −1
n Xn

(d)−→ c−1X when c 6= 0.

Proof. We use the previous proposition with (Xn, c)
(d)−→ (X, c) and d((Xn, c), (Xn, Yn)) ≤ d(Yn, c) −→

n→∞
0 where we used

indistinctly d for the distance in Rk and R2k.

Exercice 5. Prove that Xn
(d)−→ X and Yn

P−→ Y is not sufficient (in general) to have (Xn, Yn)
(d)−→ (X,Y ). (Hint:

Consider Xn = Yn = Y and X ∼ Y drawn independently.)

The particular case follows from the continuous transformation of the weak convergence.

Example of application of Slutsky Lemma If one takes X1, . . . , Xn a collection of i.i.d. random vectors such that
E [X1] = 0 and E

[
X2

1

]
< +∞. One can compute the two classical estimators,

Xn =
1

n

n∑
i=1

Xi and S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2.
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By the weak law of large numbers, Xn
P−→ 0 and

S2
n =

n

n− 1

(
1

n

n∑
i=1

X2
i −X

2

n

)
P−→ E

[
X2

1

]
− (E [X1])2 = Var (X1)

where we used Theorem 1 for the function g(x, y) = x − y2. The central limit theorem also gives that
√
n Xn

(d)−→
N (0,Var (X1)) which, combined with Slutsky’s Lemma, implies

√
n
Xn

S2
n

(d)−→ N (0, 1).

This last property allows to design confidence intervals for the mean E [X1] of a sample of unknown common variance.

2.2 Exercices
Exercice 6. Let (Xn)n≥0 a sequence of real random variables.

1. Show that the convergence in distribution of (Xn)n≥1 is NOT equivalent to “ For any continuous function of compact
support f , the sequence (E(f(Xn)))n≥1 converge.”

2. Show that the convergence in distribution of (Xn)n≥1 is equivalent to “For any continuous function of compact
support f , the sequence E(f(Xn)) −−−−→

n→∞
E(f(X0)).”

3. We assume that Xn
L1

−−−−→
n→∞

X0.

(a) Show that for any fixed ε > 0, there exists δ > 0 such that E(‖Xn‖1Xn∈F ) < ε for all n ≥ 0 and any F ∈ B(R)
such that P(F ) ≤ δ.

(b) Deduce that if Xn
L1

−−−−→
n→∞

X0, then Xn
P−−−−→

n→∞
X0 y (Xn)n≥0 is uniformly integrable.

Exercice 7. Let (Xn)n≥1 be a sequence of random variables.

1. Assume that (Xn)n≥1 converges in distribution to a standard gaussian random variable N . Is there convergence of
E(|Xn|p) towards E(|N |p) for any p ≥ 1?

2. Show the converse: If the sequence E(|Xn|p) converges to E(|N |p) for all p ≥ 1, then (Xn)n≥1 converges in distribu-
tion to the standard gaussian variable N .

Exercice 8. Let (Xn)n≥1 be a sequence of real random variables with support included in Z.

1. We assume that (Xn)n≥1 converges in distribution towards X. What is the support of X? Show that for any x ∈ Z,

P(Xn = x) −−−−→
n→∞

P(X = x).

2. Assume that X is a real random variable and that for all x ∈ Z,

P(Xn = x) −−−−→
n→∞

P(X = x).

What should verify X so that Xn converges to X ?

Exercice 9. Let (Xn)n≥1 be a sequence of binomial random variables of parameters (n, 1/n). Let (Yn)n≥1 be a sequence of
random variables such that for any x ≤

√
n, conditionally to Xn = x, we have that Yn = x and otherwise, conditionally to

Xn = x, we have that Yn is a binomial random variable of parameters (x!, 1
π ). Show that (Yn)n≥0 converges in distribution

and describe the limit.

Exercice 10. Let X be a random variable of support included in Z and with distribution

P(X = n) =
C

2n2 log n
,

for all n ∈ Z.
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1. Show that X has no moment of order 1.

2. Calculate the characteristic function φX of X.

3. Show that φX is differentiable on R.

Exercice 11. Let Z be a random variable with uniform distribution on [−1, 1].

1. Compute the characteristic function of Z.

2. Show that there is no independent random variables X,Y such that X − Y ∼ Z.



Chapter 3

Distribution function

For a random vector X = (X1, . . . , Xk), the function FX : Rk → [0, 1] and given by

FX(x1, . . . , xk) = P (X1 ≤ x1, . . . , Xk ≤ xk)

is called the distribution function of the random vector X. In the real case, it is obvious to see that the distribution
function is no-decreasing. The vectorial case is a little different in the notion of monotonicity of FX . We say that a
function f is 2-increasing if for any two coordinate i and j in {1, . . . , k}, we have ∀x ≤ y and ∀u ≤ v,

∆(i)
x,y∆(j)

u,vf ≥ 0,

where ∆
(i)
a,b = (f (i)(·, b)− f (i)(·, a))/(b− a) and f (i)(·, x) holds for the function

(x1, . . . , xi−1, xi+1, . . . , xk) 7→ f(x1, . . . , xi−1, x, xi+1, . . . , xk).

Proposition 3. We have the following. For two vectors x, y of Rk, we denote by x ≤ y if each coordinate of x is smaller
than each coordinate of y.

a) FX is a 2-increasing function.

b) Denoting by x → +∞k the fact that each coordinate of x tend to +∞ and by x → −∞∪k the fact that at least one
of the coordinates converges to −∞, we have that

lim
x→+∞k

FX(x) = 1 and lim
x→−∞∪k

FX(x) = 0.

c) FX is right-continuous.

Proof. Obvious.

Remark 1. The notion of right continuity is to be understood in its weak version. It is formally defined as

‘For any sequence (xn)n ∈ (Rk)N decreasing (coordinate by coordinate) to x, FX(xn) −→
n→+∞

FX(x)’

A natural question is to ask whether or not those are the maximal properties that a distribution function have in full
generality. We can answer by the affirmative thanks to the following section.

3.1 Existence of random variables of given distribution function
In this section, we will use the important Carathéodory extension theorem. See Theorem 12

Proposition 4. Let F : Rk → [0, 1] which satisfies a),b) and c) of Proposition 3 then there exists a random vector X ∈ Rk
such that FX = F .

Proof. We treat the case k = 2 since the general case is a direct generalization of this case. Assume given the function
F : R2 → [0, 1] and let Σ0 be the algebra (in the sense of Definition 17.1.1) of all the sets which are Cartesian product of
sets of the form

(a, b], (−∞, b], (a,+∞), R, ∅ where a, b ∈ R.

17
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One can directly construct a countably additive map µ0 : Σ0 → [0, 1] corresponding to the natural meaning of a distribution
function. For example for the set A = (a, b] × (c, d] (where a ≤ b and c ≤ d with a, b, c, d ∈ R = R ∪ {−∞,+∞})
corresponding to a event of the form

{a < X1 ≤ b & c < X2 ≤ d},
one would associate the value µ0(A) := F (b, c) − F (b, c) − (F (a, d) − F (a, c)). The first property of Proposition 3
implies that µ0(A) is always a positive quantity. Also note that, in order to be consistent, we need the conditions
F (−∞, ·) = F (·,−∞) = 0 that are given by the second point of Proposition 3. The countably additive property of µ0

follows easily from the right-continuous property of F . Hence Carathéodory theorem allows us to extend µ0 to the σ-algebra
generated by Σ0 which is the Borelian sets. Hence, one have constructed a measure on R2 (and hence a corresponding
random variable X) such that µX has distribution function F .

In the following result, we state and prove a Lemma that is at the basis of the characterization of the convergence in
distribution by the distribution functions.

Lemma 3 (Helly). Let (Fn)n be a sequence of distribution functions on Rk. Then, there exists a non decreasing right-
continuous function F such that 0 ≤ F ≤ 1 and a sub-sequence (ni)i such that

lim
i→∞

Fni(x) = F (x) for each point x of continuity of F.

Be careful Lemma 3 is not sufficient to ensure that the resulting object F is a distribution function. Indeed, it is
completely possible to be facing a case where

lim
x→−∞k

F (x) 6= 0 or lim
x→∞k

F (x) 6= 1.

This comes from the fact that P(Rk) is not compact in general. One can see that by considering the sequence (µn)n such
that µn = δ(n,...,n) which has no sub-sequence that converges to a probability measure. Besides, the interested reader may
be pleased to know that Riesz representation theorem makes of P(Rk) (embedded with the weak topology) a compact
metric space.

The following definition makes clear the suitable assumption to make to avoid dealing with the non-closed case of Helly’s
lemma.

Definition 4 (tension of measures). A sequence (µn)n in P(Rk) is said to be tight if

∀ε > 0,∃K > 0 s.t. for all n, µn([−K,K]k) ≥ 1− ε

Note that for the measures of a sequence of random vectors (Xn)n, the previous definition is equivalent to

lim
x→+∞

sup
n

P (‖Xn‖ ≥ x) = 0.

Exercice 12. Show that the last assertion is true.

We have the final

Lemma 4. Let (Fn)n be a sequence of distribution functions on Rk such that

lim
n→∞

Fn(x) = F (x) for each point x of continuity of F.

Assume furthermore that (Fn)n is tight. Then, F is a distribution function on Rk.

Proof. Since for all n, Fn(K) ≥ µn([−K,K]k) ≥ 1− ε, it holds that

lim
x→+∞k

F (x) = 1

For any x = (x1, . . . , xk) ∈ Rk, Fn(−K − 1, x2, . . . , xk) = µn((−∞,−K − 1]× (−∞, x2]× · · · × (−∞, xk]). But since the
two sets (−∞,−K − 1]× (−∞, x2]× · · · × (−∞, xk] and [−K,K]k are disjoints, we have

µn((−∞,−K − 1]× (−∞, x2]× · · · × (−∞, xk]) ≤ 1− µn([−K,K]k) ≤ ε,

and then
lim

x→−∞∪k
FX(x) = 0.
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The counter example fails to verify the tension condition as state in the following exercise.

Exercice 13. Show that µn = δ(n,...,n) is not tight.

Proof of Helly’s Lemma. We have the inclusion of the countable set Qk ⊂ Rk. Let q1, q2, . . . be a enumeration of the
elements of Qk. The sequence (Fn(q1))n is a bounded sequence of (in [0, 1]) reals. Then, by compactness, one can
extract a sub-sequence such that Fn(1,j)(q1) −→ H(q1) where the notations n(1, j) and H(q1) hold respectively for the
extractor sequence and for the limit. Now, the sequence (Fn(1,j)(q2))j is also a sequence in [0, 1] and another extraction
n(2, j) ⊂ n(1, j) gives that Fn(2,j)(q2) −→ H(q2). Hence one can construct a sequence of extraction such that

∀i, Fn(i,j)(qi) −→
j→∞

H(qi).

We finally have that ∀q ∈ Qk, H(q) = lim
i→+∞

Fn(i,i)(q). It is obvious to see that 0 ≤ H ≤ 1 and that H is a 2-increasing

function on Qk. We define, ∀x ∈ Rk, F (x) := H
q↓x

(q) it always exists since it is the limit of a decreasing sequence. It

may not be clear that the function F is well defined. Let (qn)n and (q′n)n be two sequences such that qn ↓ x and q′n ↓ x
and let F (x) be the limit defined by (qn)n and F ′(x) be the limit defined by (q′n)n. By the fact that qn → x, one can
extract a sub-sequence qni such that ∀i, qni ≤ q′i. Now, taking the limit in i, of H(qni) ≤ H(q′i) gives F (x) ≤ F ′(x). But
symmetrically, F ′(x) ≤ F (x) and the function F is well-defined. By construction, we have that F is right-continuous and,

Fn(i,i)(x) −→ F (x) for every point of continuity of F.

When the limiting function F is continuous, we have a stronger result.

Proposition 5 (Glivenko-Cantelli). Let (Xn)n be a sequence of random variables in R of distribution function (Fn)n.

Assume that Xn
(d)−→ X where we denote by F the distribution function of X. Assume that F is continuous on R, then

sup
x∈R
|Fn(x)− F (x)| −→

n→∞
0.

Proof. Let m ∈ N∗ and let −∞ = x0 < x1 < · · · < xm = +∞ such that F (xi) = i/m. This is possible since F is
continuous. (The xi may not be unique.) Then, for any x ∈ [xi−1, xi],

Fn(x)− F (x) ≤ Fn(xi)− F (xi−1) = Fn(xi)− F (xi) +
1

m
.

In the same way, we have that Fn(x)− F (x) ≥ Fn(xi−1)− F (xi−1)− 1
m . From those two facts, we have that

sup
x∈R
|Fn(x)− F (x)| ≤ sup

0≤i≤m
|Fn(xi)− F (xi)|+

1

m
.

Now, let ε > 0 and fix m ≤ 2/ε such that 1/m ≤ ε/2. Remark that the supremum is taken over a finite family of random
variables so the classical law of large numbers (Proposition 10) can be applied m+ 1 times to get that for n large enough,

sup
0≤i≤m

|Fn(xi)− F (xi)| ≤
ε

2
.

This concludes the proof.
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Chapter 4

Levy theorem

Levy’s theorem is one of the building blocks of the study of characteristic functions. It characterizes the convergence in
law of random variables through the convergence of their Fourier transforms. It is one of the simplest way to prove the
CLT for random vectors. Before going through the theorem itself, one need to develop a few tools in the area of functional
analysis and Fourier transform in Lp.

4.1 Characteristic function

For a random variable X of measure µ, the function defined for any t ∈ Rk,

φX(t) = E [exp(it ·X)]

is called characteristic function. This notion is deeply linked with functional analysis. Indeed, the Fourier transform
of a measure is defined as

Fµ(ξ) =

∫
Rk

exp(−ix · ξ)dµ(x).

so that we have φX(t) = Fµ(−t). From this fact, all the properties that are possible to show on the Fourier transform
can be settled for characteristics functions and vice versa. Some authors like to presents ad hoc proofs on characteristic
functions. We choose to write things in a way that it is close in notation and spirits to the functional analysis literature.

4.1.1 Basic properties of the characteristic function

Proposition 6. Let X be a random vector and let φX be its characteristic function. We have the following facts.

1. φX(0) = 1.

2. For all t ∈ Rk, |φX(t)| ≤ 1.

3. On Rk, the function t 7→ φX(t) is continuous.

4. For any a ∈ R and b ∈ Rk, φaX+b(t) = eib·tφX(at).

5. If for n ∈ N, E [‖X‖n] <∞, we have

∂
(n)
j φX(t) = E

[
(iXj)

neit·X
]

and ∂
(n)
j φX(0) = inE [(Xj)

n]

Proof. All the statement are simple use of classical results in integration as dominated convergence theorems.

It is important to know that most of the classical distribution have explicit formulas for the characteristic function.

Example 1. The caracteristic function of N (µ, σ2) is

∀t ∈ R, φµ,σ2(t) = exp

(
itµ− σ2t2

2

)
.

21
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Proof. A random variable X ∼ N
(
µ, σ2

)
can be written X = µ+ σZ where Z ∼ N (0, 1). So, φµ,σ2(t) = eitµφ(σt) where

φ is the characteristic function of Z. It is sufficient to prove φ(t) = e−t
2/2. Since the density function f0,1 of N (0, 1) is

symmetric, we have that ∀t ∈ R, φ(t) = φ(−t) hence,

φ(t) =
φ(t) + φ(−t)

2
=

∫
R

eitz + e−itz

2
f0,1(z)dz =

∫
R

cos(tz)
1√
2π
e−

z2

2 dz

and then φ(t) is real. By the theorem of derivation under the integral and integration by parts,

φ′(t) =

∫
R

sin(tz)
−z√
2π
e−

z2

2 dz = −
∫
R
t cos(tz)

1√
2π
e−

z2

2 dz = −tφ(t).

This simple linear equation takes as solutions the functions φ(t) = e−t
2/2 +C, but φ(0) = 1 then C = 0. Finally, the only

possibility is φ(t) = e−t
2/2.

4.2 Fourier analysis

4.2.1 Convolution of measures

For µ probability measure (see [5] for more general measures) and f a function integrable with respect to µ, we define the
convolution of a function by a measure f ? µ by

f ? µ : x 7→
∫
Rk
f(x− y)dµ(y).

Also, the convolution between two measures µ and ν is given by

∀A measurable, µ ? ν(A) =

∫
Rk×Rk

1x+y∈Adµ(x)dν(y)

where A and B are the respective σ-algebras of µ and ν. It will be checked in the appendix that µ?ν is indeed a probability
measure on Rk in Fact 1. It is shown in appendix the habitual:

Proposition 7. The Fourier transform satisfies the following basic properties. For µ and ν two probability measures,

• ‖Fµ‖∞ ≤ 1.

• F(µ ? ν) = (Fµ)× (Fν).

The convolution of measures is very convenient to compute the distribution of sums of independent random variables.

Proposition 8. Let X ∼ µ and Y ∼ ν be two independent random variables and let Z = X + Y . Then

i) Z has the probability law given by µ ? ν.

ii) If X has a continuous bounded density f , then Z has a continuous density given by f ? ν.

The second fact can be useful when one wants to smooth some distribution Y by a small X in order to get a random
variable Z that has a density.

Proof. Point i) can be seen on all borelians of the form (−∞, a], for example. Point ii) can be seen using that ∀h lipschitz,

E [h(Z)] = E [h(X + Y )] =

∫∫
h(x+ y)f(x)dxdν(y) =

∫
h(z)

(∫
f(z − y)dν(y)

)
dz.
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4.2.2 Inversion formula

Parseval Identity Let X and Y be two random variables taking values in Rk of respective measures µ and ν. Finally,
we denote by φµ the characteristic function of X and by φν the characteristic function of Y . We get that, for any t ∈ Rk

exp(−iξ · t)φµ(ξ) =

∫
Rk

exp(iξ · (x− t))dµ(x).

Under the condition that φµ ∈ L1(Rk, ν) (integrable with respect to ν), integrating both sides with respect to ν and using
Fubini’s theorem give that ∫

Rk
exp(−iξ · t)φµ(ξ)dν(ξ) =

∫
Rk
φν(x− t)dµ(x). (4.1)

This equation is called Parseval inequality. It has to be understood as a continuous version of the Perseval inequality
for periodic functions. As for Fourier series, it is a inversion formula that permits to link the norms of the transform of a
function (here the characteristic function) and of the function itself.

Special case When one specify the previous identity where one takes ν to be a normal probability measure, centered
and of variance σ−2I, the previous identity takes the form

σk

(2π)k/2

∫
Rk

exp(−iξ · t)φµ(ξ) exp(−1

2
σ2ξ2)dξ =

∫
Rk

exp

(
− (x− t)2

2σ2

)
dµ(x)

where the square of a vector has to be understood as the square of its norm.

Inversion Formula We are now ready to give the complete proof of the inversion formula.

Theorem 3. Let µ be a borelian measure of probability on Rk let X be a random variable of measure µ. Denote by φµ its
characteristic function. Then φµ ∈ L1(Rk) if and only if µ admits a continuous and bounded density f (on Rk) given by

f(x) =
1

(2π)k

∫
Rk

exp(ix · ξ)φµ(−ξ)dξ. (4.2)

Proof. Assume that X has a density given by fX . We, now, show that f given by Equation (4.2) coincide with fX . The
idea is to use Fubini theorem to exchange the order of integration of y and ξ but the lack of integrability prevents us to
use it directly. For that purpose, we introduce a quantity on which it is possible to use Fubini’s theorem and then see
that it approximates the case of interest. Let

Iε(x) =
1

(2π)k

∫∫
Rk×Rk

exp(i(x− y) · ξ) exp
(
− ε2 ξ

2

2

)
dµ(y)dξ.

By integrating in y (implicitly using Fubini theorem) we get that

Iε(x) =
1

(2π)k

∫
Rk

exp(ix · ξ) exp
(
− ε2 ξ

2

2

)
φµ(−ξ)dξ

and then taking the limit for ε→ 0 and using dominated convergence theorem, we get

lim
ε→0

Iε(x) =
1

(2π)k

∫
Rk

exp(ix · ξ)φµ(−ξ)dξ = f(x).

On the other side, by integrating first on the variable ξ, we get

Iε(x) =
1

(2πε)k

∫
Rk

(∫
Rk

exp
(
i
1

ε
(x− y) · εξ

)
exp

(
− ε2 ξ

2

2

)
εkdξ

)
dµ(y)

=
1

(
√

2πε)k

∫
Rk

exp
(
− ‖x− y‖

2

2ε

)
fX(y)dy

The quantity converges (in L1(Rk)) to fX(x) since the function ρε defined by

ρε(z) =
1

εk
ρ(z) where ρ(z) =

1

(2π)k/2
exp(−z

2

2
)
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is a regularizing function (see Proposition 18). By unicity of the limit, fX = f . The fact that X has a density implies
φX ∈ L1(Rk) is obtained by considering |φX(ξ)| =

√
φX(ξ)φ−X(ξ) and∫ A

−A
|φX(ξ)| ≤

√∫∫
2

sin(A(x− y))

x− y
fX(x)fX(y)dxdydξ

which is trivially upper bounded. For the other sense, the existence is the consequence of Equation (4.2) which gives the
continuity of fX by use of dominated convergence theorem.

4.2.3 The characteristic function characterizes the law
The characterization of the law of a random variable is given by Theorem 3.

Proposition 9. Let X and Y be two random vectors such that φX = φY . Then, the distribution of X and the distribution
of Y are equal.

Proof. Let Z ∼ Nk(0, 1) be a gaussian random vector independent from X and Y . Let σ > 0 and the two random vectors
Xσ = X + σZ and Yσ = Y + σZ so that φXσ = φYσ (use Proposition 6). By Proposition 8, Xσ and Yσ have continuous
and bounded density. Now, using Theorem 3 we have that Xσ ∼ Yσ. Letting σ → 0, we see that X ∼ Y by unicity of the
limit for the convergence in distribution.

4.3 Levy’s theorem
Theorem 4. Let (Fn)n be a sequence of distribution functions on the space Rk and for any n ∈ N let φn be the characteristic
function of Fn. Suppose that

φ(θ) := limφn(θ) exists for all θ ∈ Rk.

Then, the following are equivalent.

i) The sequence (Xn)n is tight.

ii) The function φ is a characteristic function.

iii) The function φ is continuous at any θ in Rk.

iv) The function φ is continuous at 0.

In particular, when one of these conditions is verified, there exists a distribution function F (hence there exists a random
variable X ∼ F ) such that φ = φF and

Fn
(d)−→ F (or equivalently Xn

(d)−→ X).

Proof. We have ii) =⇒ iii) from Proposition 6 and iii) =⇒ iv) is obvious.

i) =⇒ ii) By Helly Lemma (in Lemma 3), one can extract a sub-sequence nk such that Fnk
(d)−→ F , where F is a

distribution function (by the tightness of the sequence). By Lemma 1, we have that φnk −→ φF (pointwise). Obviously,
one has to be careful about using Lemma 1 for Lipschitz function of complex values but one can always decompose
eiθX = cos(θX) + i sin(θX) which are two real valued bounded Lipschitz functions. By unicity of the limit, we have
φ = φF and then φ is a characteristic function.
Proof of the last sentence We just showed the existence of the distribution function F . Now assume that Fn do not
converge weakly to F . Then, there exists a point of continuity x of F (the set of points of continuity is never empty since
the points of discontinuity are at most countable) and η > 0 such that there exists a sub-sequence (ni)i such that

|Fni(x)− F (x)| ≥ η.

By another use of Helly’s lemma, one can find a sub-sequence of (ni)i denoted (nij )j such that Fnij
(d)−→ F̃ where F̃ is

a distribution function (by the tightness of the original sequence). Hence, φnij → φF̃ = φF . By the uniqueness of the

characteristic function (by Proposition 9), we have F̃ = F and then Fnij (x)→ F (x) which is absurd.
iv) =⇒ i) We first show the result in dimension 1 (k=1). Let ε > 0. The quantity φn(θ) + φn(−θ) is real and bounded
(by 2). By continuity of φ in 0, we can find δ > 0 such that ∀|θ| < δ, |1− φ(θ)| < ε/4 and

0 < δ−1

∫ δ

0

(2− φ(θ)− φ(−θ))dθ ≤ ε

2
.
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Then by the (DOM) theorem (Theorem 10), ∃n0 such that ∀n ≥ n0,

δ−1

∫ δ

0

(2− φn(θ)− φn(−θ))dθ ≤ ε.

Then, first using Fubini theorem,

ε ≥ δ−1E

[∫ δ

−δ
(1− eiθXn)dθ

]
= 2E

[
1− sin(δXn)

δXn

]
≥ 2E

[
1|Xn|>2δ−1

(
1− 1

|δXn|

)]
≥ E

[
1|Xn|>2δ−1

]
= P

(
|Xn| > 2δ−1

)
.

Since, the choice of δ is not depending on n, we have shown that the sequence (Xn)n≥n0
is tight. But one can trivially

add any finite sequence of random variables to a tight sequence and the resulting sequence keeps being tight.
For the general case, one has to replace the real valued quantity φn(θ) + φn(−θ) by a new one. For k = 2, f(θ1, θ2) =
φn(θ1, θ2) + φn(θ1,−θ2) = E

[
eiθ1Xn,12 cos(θ2Xn,2)

]
. One has to define the real valued g(θ1, θ2) = f(θ1, θ2) + f(−θ1, θ2)

to replace the previous quantity. The arguments remain the same and are easily generalizable to any dimension.

A obvious use of the previous theorem allows us to derive a usefull corollary.

Corollary 1 (Cramer-Wold device). Let (Xn)n be a sequence of random variables in Rk. Then

Xn
(d)−→ X ⇔ ∀t ∈ Rk, tTXn

(d)−→ tTX

Proof. Exercice [ref section exercices]

Example 2. Let Z be a random vector of law Nk(µ,Σ), [DEFINE THE DISTRIBUTION] then

φZ(θ) = eiθ
Tµ− 1

2 θ
TΣθ.

To see this, one can use the Cramer-Wold device and compute the characteristic function of tTZ for any t ∈ Rk. The
random variable tTZ is normal by definition and E

[
tTZ

]
= tTµ,

Var
(
tTZ

)
= E

[
(tTZ − tTµ)2

]
= E

[
(tTZ − tTµ)(tTZ − tTµ)T

]
= tTE

[
(Z − µ)(Z − µ)T

]
t = tTΣt

Now using the result of Example 1, we have

φZ(θ) = φθTµ,θTΣθ(1) = exp

(
i(θTµ)× 1− θTΣθ × 12

2

)

4.4 Law of Large Numbers and Central Limit Theorem

4.4.1 The Central Limit Theorem
We use Theorem 4 to prove the classical weak version of the Law of Large Numbers (LLN) and the Central Limit Theorem
(CLT).

Theorem 5 (CLT). Let X1, . . . , Xn be i.i.d random variables (en R) with E [X1] = 0 and E
[
X2

1

]
= σ2. Let Xn =

n−1
∑
Xi. Then, the sequence

√
nXn converges in distribution towards N (0, σ2).

Proof. We use Levy’s theorem. Let φ = φX1
. The existence of the two first derivative are given by Proposition 6 and

φ′(0) = iE [X1] = 0 as well as φ′′(0) = i2E
[
X2

1

]
= −σ2. By independence, we see that

E
[
eit
√
n Xn

]
= φn

(
t√
n

)
=

(
1− t2σ2

2n
+ o

(
1

n

))n
−→

n→+∞
e−

t2σ2

2 .

Since the function t 7→ e−t
2σ2/2 is continuous in 0 and is the characteristic function of N (0, σ2), we have the conclusion.

One can directly use the Cramer-Wold device to get the mutlidimensional version of the (CLT).

Theorem 6. Let X1, . . . , Xn be i.i.d. random vectors in Rk, with µ = E [X1] and Σ = E
[
(X1 − µ)(X1 − µ)T

]
, we get

that
1√
n

n∑
i=1

(Xi − µ)
(d)−→ Nk(0,Σ).

Proof. Use Cramer-Wold device with the fact that ∀t ∈ Rk, the familly of Yi = (tTXi − tTµ)i satisfies Theorem 5.
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4.4.2 The Law of Large Numbers
We show the weak version of law of large numbers. The naming weak comes from the fact that the convergence occurs in
probability eventhough it is known to be true in the a.s. convergence under the same set of hypothesis. Nevertheless, a
few more tools are needed for that purpose.

Proposition 10 (LLN). Let X1, . . . , Xn be i.i.d random variables of characteristic function φ. Assume that φ′(0) = iµ

for a µ ∈ R, then Xn
P−→ µ.

Proof. Expanding φ, we get φ(t) = 1 + tφ′(0) + o(t) when t→ 0. Then

E
[
eitXn

]
= φn

(
t

n

)
=

(
1 +

itµ

n
+ o

(
1

n

))n
−→

n→+∞
eitµ

which is the characteristic function of a constant (equal to µ) random variable. Since the limit is constant, the convergence
in distribution transfers to a convergence in probability (by Theorem 2).

Exercice 14. Show the mutlidimensional version of Proposition 10.

4.5 Rare events theorem
Theorem 7 (Rare events). Let (Xn,j)1≤j≤Mn

be a family of independent Bernoulli random variables of parameter pn,j.
Assume that

(i) Mn is increasing and tends towards +∞.

(ii)
∑Mn

j=1 pn,j −→n→+∞
λ > 0.

(iii) max1≤j≤Mn
pn,j −→

n→+∞
0.

Then, if Sn = Xn,1 + · · ·+Xn,Mn , we have Sn
(d)−→ P(λ) (the Poisson distribution of parameter λ).

Proof. By independence of the random variables Xn,j , we have that

φSn(t) =

Mn∏
j=1

φXn,j (t) =

Mn∏
j=1

(pn,je
it + 1− pn,j) =

Mn∏
j=1

(1 + pn,j(e
it − 1)).

Let log be the principal determination of the complex logarithm (on C\(−∞, 0]). Then, using Taylor’s formula for the
function t 7→ log(1 + tz), we have that for any z such that |z| < 1,

log(1 + z) = z − z2

∫ 1

0

(1− u)
1

(1 + uz)2
du.

Now take z = eit − 1. By (iii), for n large enough, one has that max1≤j≤Mn pn,j ≤ 1/2. So∣∣∣∣∣∣
Mn∑
j=1

p2
n,jz

2

∫ 1

0

(1− u)
1

(1 + upn,jz)2
du

∣∣∣∣∣∣ ≤
(

max
1≤j≤Mn

pn,j

) Mn∑
j=1

pn,j

∫ 1

0

(1− u)
1

(1/2)2
du −→

n→+∞
0,

then log φSn(t) is well defined and
Mn∑
j=1

log(1 + pn,j(e
it − 1)) −→

n→+∞
λ(eit − 1).

This implies that φSn(t) → eλ(eit−1) which is the characteristic function of P(λ) and we conclude by using Levy’s
theorem.



Chapter 5

Lindeberg-Feller theorem

The theorem of Lindeberg and Feller deals with the non-i.i.d. case in the Central Limit Theorem. It can also be used
when the distribution of each variable depends on n, the number of observations.

Theorem 8 (Lindeberg-Feller). Let (kn)n be a sequence of integers. For every n ∈ N, we assume to have access to
(Xn,1, . . . , Xn,kn) a collection of independent random vectors (i.e. ∀i,Xn,i ∈ Rd). Assume that

1. Rn :=
kn∑
i=1

E
[
‖Xn,i‖21‖Xn,i‖>ε

]
−→

n→+∞
0, ∀ε > 0.

2.
kn∑
i=1

Cov(Xn,i) −→
n→+∞

Σ

Then
kn∑
i=1

Xn,i − E [Xn,i]
(d)−→

n→+∞
N (0,Σ).

Proof. We divide the proof in four steps.

Step 1: Reduction to the real case Without any restriction of generality, we can assume (by a centering) E [Xn,i] = 0.
By the result of Cramer-Wold 1, it is sufficient to show that for all t ∈ Rd,

tT
kn∑
i=1

Xn,i
(d)−→

n→+∞
N
(
0, tTΣt

)
.

Let fix t ∈ Rd. It is easy to see that the hypothesis of the theorem imply the same hypothesis for the random variables
tTXn,i. Indeed,

E
[
(tTXn,i)

2
1|tTXn,i|>ε

]
≤ E

[
‖t‖2‖Xn,i‖21‖tT ‖‖Xn,i‖>ε

]
= ‖t‖2E

[
‖Xn,i‖21‖Xn,i‖> ε

‖t‖

]
−→ 0

and
kn∑
i=1

E
[
(tTXn,i)

2
]

=

kn∑
i=1

E
[
tTXn,iX

T
n,it
]

= tT
( kn∑
i=1

Cov(Xn,i)
)
t −→ tTΣt.

Then, it is enough to show the theorem for real valued random variables only. For the rest of the proof, we assume that
∀i, Xn,i ∈ R.

Step 2: Variance control We denote by σ2
n,i = E

[
X2
n,i

]
and σ2

n =
∑kn
i=1 σ

2
n,i, then, by assumption, σ2

n converges to a
finite quantity that we denote σ2. Furthermore,

sup
i=1,...,kn

σ2
n,i = sup

i=1,...,kn

(
E
[
X2
n,i1|Xn,i|≤ε

]
+ E

[
X2
n,i1|Xn,i|>ε

])
≤ ε2 +

kn∑
i=1

E
[
X2
n,i1|Xn,i|>ε

]
= ε2 +Rn.

Fix ε0 > 0 and ε =
√
ε0/2. There exists N0 such that ∀n ≥ N0, Rn ≤ ε0/2. Hence, supi=1,...,kn σ

2
n,i tends to 0. By

assumption, σn has a non-zero limit which implies that, ∀δ > 0,∃n0,∀n ≥ n0,∀i ∈ {1, . . . , kn}

|σ2
n,i| ≤ δσ2

n (5.1)

27
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Step 3: An equivalence Let Sn =
∑kn
i=1Xn,i. We have to show that

φSn(t) −→
n→+∞

e−
1
2 t

2σ2

. (5.2)

We begin with showing that (5.2) is equivalent to

kn∑
i=1

φXn,i(t)− 1 −→
n→+∞

−1

2
t2σ2. (5.3)

For that purpose, we use the following lemma which is proved in Section 15.1.

Lemma 5. Let a1, . . . , an and b1, . . . , bn be complex numbers such that ∀i, |ai| ≤ 1 and |bi| ≤ 1. Then

|a1a2 . . . an − b1b2 . . . bn| ≤
n∑
i=1

|ai − bi|.

Using the previous lemma with the complex numbers ai = eφXn,i (t)−1 and bi = φXn,i(t), of modulus bounded by 1, we
have ∣∣∣e∑kn

i=1(φXn,i (t)−1) − φSn(t)
∣∣∣ ≤ kn∑

i=1

|eφXn,i (t)−1 − φXn,i(t)|

≤
kn∑
i=1

|φXn,i(t)− 1|2

2
(5.4)

where we used that for any z ∈ C such that <(z) ≤ 0, it holds that |ez − 1− z| ≤ |z|2/2. See Lemma 12 for a proof of this
fact. Using the Taylor-Young formula,

|φXn,i(t)− 1| = |φXn,i(t)− 1− tφ′Xn,i(0)| =
∣∣∣∣∫ t

0

(x− t)φ′′Xn,i(x)dx

∣∣∣∣ ≤ t2

2
σ2
n,i.

where we used |φ′′Xn,i(x)| ≤ E
[
X2
n,i

]
= σ2

n,i. Then, plugging it in (5.4) and using (5.1), we finally show

∣∣∣e∑kn
i=1(φXn,i (t)−1) − φSn(t)

∣∣∣ ≤ t4

8

kn∑
i=1

σ4
n,i ≤

t4

8
σ2
nδ

This shows that the left hand side quantity tends to 0 when n goes to infinity. Finally, by triangular inequality, we have
showed (5.2) ⇔ (5.3).

Finish It remains to show (5.3). By the mean value theorem, there exists ct ∈ [0, t] such that

kn∑
i=1

φXn,i(t)− 1 +
t2

2
σ2
n =

kn∑
i=1

φXn,i(t)−
(
φXn,i(0) + tφ′Xn,i(0) +

t2

2
φ′′Xn,i(0)

)
=

kn∑
i=1

t2

2
(φ′′Xn,i(ct)− φ

′′
Xn,i(0))

=

kn∑
i=1

t2

2
E
[
−X2

n,i(e
ictXn,i − 1)

]
≤ t2

2

kn∑
i=1

E
[
X2
n,i|eictXn,i − 1|1|Xn,i|≤ε

]
+ t2

kn∑
i=1

E
[
X2
n,i1|Xn,i|>ε

]
≤ t2

2

kn∑
i=1

ctεσ
2
n,i + t2Rn ≤

t3

2
σ2
nε+ t2Rn

Since this is true for every ε > 0 and that σ2
n −→ σ2 and Rn −→ 0, we showed (5.3). By the use of Levy’s theorem 4, on

limiting characteristic function t 7→ e−t
2/2σ2

of a centered normal with variance σ2 (continuous at 0), we have finished the
proof.

5.0.1 Application to regression problems



Chapter 6

Dependent limit theorems

In this chapter we deal with the case of random variables that may be possibly weakly dependent. We assume that the
random variables (Xi)i are centered (i.e. E [Xi] = 0). If one wants to avoid assuming that condition, it will ba at the cost
of assuming that

1

n

n∑
i=1

E [Xi] −→
n→+∞

`

for a ` ∈ R.

6.1 Weakly dependent laws of large numbers

6.1.1 Weak law of large numbers under dependence

Proposition 11. Let X1, . . . , Xn be real random variables such that ∀i, E [Xi] = 0. Assume that

•
∑
iVar (Xi) = o(n2)

• There exists φ : N→ R+ such that ∀i, j, |Cov (Xi, Xj) | ≤ φ(|i− j|) and

1

n

n∑
i=1

φ(i) −→
n→+∞

0

Then

Sn =
1

n

n∑
i=1

Xi
P−→ 0.

Proof. By Chebyshev’s inequality, it is sufficient to prove that Var (Sn)→ 0.

Var (Sn) =
1

n2

n∑
i=1

Var (Xi) +
2

n2

n−1∑
i=1

n∑
j=i+1

Cov (Xi, Xj)

≤ 1

n2

n∑
i=1

Var (Xi) +
2

n2

n−1∑
i=1

n−i∑
k=1

φ(k)

=
1

n2

n∑
i=1

Var (Xi) +
2

n2

n−1∑
k=1

(n− k)φ(k)

≤ 1

n2

n∑
i=1

Var (Xi) +
2

n

n∑
k=1

φ(k) = o(1)

Of course, one could replace the second condition of Proposition 11 by the stronger Cov (Xi, Xj)→ 0 when |i− j| → ∞.
The first condition is trivially satisfied when the Xi’s are identically distributed or when one can find c > 0 such that ∀i,
Var (Xi) ≤ c.

29
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6.1.2 Strong law of large numbers under dependence
One option to prove strong dependent law of large numbers is Lemma 28, at the cost of assuming a uniform bound by at
integrable variable X.

Corollary 2. Assume the hypothesis of Proposition 11 and ∀i, |Xi| ≤ X such that E [X] <∞, we obtain that

Sn
a.s.−→ 0.

It is also possible to prove a version of it using martingales techniques. The centering has to be handled carefully since,
in general, the sum of dependent random variables does not satisfy the martingale axioms. We use the notation Fi for
the filtration corresponding to σ(X1, . . . , Xi).

Proposition 12. Let X1, . . . , Xn be real random variables such that ∀i, E [Xi] = 0. Assume that there exists r ≥ 0 such
that for all i, j such that |i− j| ≥ r, Xi and Xj are independent. Assume that

• For all i = 1, . . . , n and j = 1, . . . , r, E [Var (Xi|Fi−j)] ≤ σ2
i .

•
∑
i σ

2
i <∞.

Then
∑n
i=1Xi converges almost surely towards 0.

Note that the assumptions of Proposition 12 include the assumptions of Proposition 11 when one apply it for the random
variables n−1Xi.

Proof. The proof uses the fact that a martingale bounded in L2 is almost surely convergent. Let Yi = Xi−E [Xi|Fi−1] so
that Mt =

∑t
i=1 Yi is a martingale.

E
[
M2
n

]
=

n∑
i=1

E
[
(Mi −Mi−1)2

]
=

n∑
i=1

E
[
Y 2
i

]
=

n∑
i=1

E [Var (Xi|Fi−1)] ≤
n∑
i=1

σ2
i

Then the martingale (Mn)n is bounded in L2 and its limit exists and the convergence is almost sure. Now define
Zi = E [Xi|Fi−1] − E [Xi|Fi−2]. The sum (Nn)n of the random variables Zi is again a martingale bounded in L2 for the
same kind of calculations. Then, identically, Nn converges almost surely. Following this scheme, we can write

∑
iXi as a

sum of r martingales of the form
t∑
i=1

E [Xi|Fi−j ]− E [Xi|Fi−j−1]

that all converge almost surely. Then,
∑
iXi converges almost surely to a random variable X. Since the assumptions of

Proposition 11 are fulfilled, the only possible limit is 0.

Of course, one can imagine generalizations of the previous result when the resulting convergence for the martingales are
of type ‘bounded in L1’ only using first moments conditions. It is also possible to generalize Kolmogorov three series
theorem in the case of weak dependence. Finally, the weak dependence condition of Proposition 12 does not have to be of
uniform flavor and a bound depending on j is possible as long has one ask for the convergence of the series of variances.

6.2 Central Limit Theorems under dependence
In this section, we expose weak dependence central limit theorems using the ideas of Lindeberg-Feller theorem.

6.2.1 Bernstein blocks
Assume given a sequence of random variables X1, . . . , Xn, we decompose its sum into blocks of two different size. This is
the so-called Berstein block technique. Let (pn)n and (qn)n be two sequences such that

pn −→
n→+∞

+∞, qn −→
n→+∞

+∞, q = o(p), p = o(n).

We split Sn =
∑n
i=1Xi into blocks of different size. The benefit from this technique is to be able to make use of gaps (of

size qn) between blocks as well as the fact that the blocks of size qn are too small to count in the final convergence.

Sn =

k∑
i=1

εi +

k+1∑
i=1

νi = Zk + Z ′k+1,
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where for 1 ≤ i ≤ k,

εi =

ip+(i−1)q∑
(i−1)p+(i−1)q+1

Xj , νi =

ip+iq∑
ip+(i−1)q+1

Xj (6.1)

and νk+1 =
∑n
k(p+q)+1Xj where pn = p, qn = q and k = bn/(p + q)c. In the following result, we encode the good

assumptions to obtain that the part Z ′k+1 does not influence the convergence.

Lemma 6. Let X1, . . . , Xn be real random variables. Let Sn =
∑n
i=1Xi and σ2

n = Var (Sn). Assume that for two
sequences verifying (6.1), we have that

1. 1
σ2
n
E
[
Z
′2
k+1

]
−→
n→∞

0,

2. Ck,g,h(t) :=
∑k
j=2

∣∣∣Cov(g ( t
σn

∑j−1
i=1 εi

)
, h
(
t
σn
εj

))∣∣∣ −→
n→∞

0, for all t ∈ R and g, h ∈ {cos, sin},

3. 1
σ2
n

∑k
i=1 E

[
ε2
i1|εi|≥εσn

]
−→
n→∞

0, for all ε > 0,

4. 1
σ2
n

∑k
i=1 E

[
ε2
i

]
−→
n→∞

1.

Then, Sn/σn converges in distribution towards N (0, 1).

Proof. Since Sn/σn = Zk/σn+Z ′k+1/σn, assumption 1. and Slutsky’s lemma show that the limit in distribution of Sn/σn
is the same as the limit of Zk/σn. We follow the proof of Theorem 8 on the random variables εi. Assumptions 3. and 4.
give an equivalent of (5.1) for the sequence (εi)i which is

sup
i
σ2
n,i ≤ δσ2

n,

where σ2
n,i = Var (εi). The challenging part is the one corresponding to Step 3 of Theorem 8 and more particularly the

first line of (5.4).

∣∣∣e∑k
i=1(φεi/σn (t)−1) − φZk/σn(t)

∣∣∣ ≤ ∣∣∣∣∣e∑k
i=1(φεi/σn (t)−1) −

k∏
i=1

φεi/σn(t)

∣∣∣∣∣+

∣∣∣∣∣
k∏
i=1

φεi/σn(t)− φZk/σn(t)

∣∣∣∣∣
≤

k∑
i=1

|eφεi/σn (t)−1 − φεi/σn(t)|+ 4 max
g,h∈{cos,sin}

Ck,g,h(t)

where we used the fact that eitx = cos(tx) + i sin(tx) and a telescopic sum. The first term can be handled in the same
way as in Theorem 8 whereas the second term tends to 0 by asumption. Finally, the convergence of

∑k
i=1(φεi/σn(t)− 1)

is completely similar and we get that Zn/σn
(d)−→ N (0, 1).
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Chapter 7

Concentration inequalities

In this chapter we derive an important class of results called concentration inequalities. They are a tool to control the
deviation of a function of a certain number of independent random variables around its expected value. A concentration
inequality is a result of the form

P (Z − E [Z] ≥ t) ≤ g(t)

where the function g is a function depending on the distribution of Z.

Figure 7.1: The concentration inequality of Bienaymé-Tchebychev

When Z = Zn := fn(X1, . . . , Xn) is function of independent random variables X1, . . . , Xn, one includes the dependence
in n in the deviation function so that

P (Z − E [Z] ≥ t) ≤ g(n, t). (7.1)

We expect to find a non-increasing function g with respect to its arguments n and t. The advantage of such results is
that they permit to express statistical or probabilistic results valid for a fixed value of the number n of variables in the
problem. It has to be expected that the concentration inequalities involve worse constants than in asymptotic theorems.
Indeed, if we assume that Zn converges to a limit variable Y , since the concentration inequalities (7.1) are valid for every
n, and that the concentration of the asymptotic variable Y only verifies (7.1) in the limit sense, we logically get worse
bounds. This chapter is highly inspired by the excellent [2].

Figure 7.2: In solid line represents the distribution of a variable Zn. The dotted line is a concentration inequality (here
Bienaymé-Tchebychev). The dashed line represents the asymptotic distribution of the variable Zn.
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7.1 Chernoff Inequality
Here we show Markov’s inequality and its direct consequences.

Proposition 13. Let X be a real random variable. We assume that X is non-negative, then

∀t > 0, P (X ≥ t) ≤ E [X]

t
.

Proof. We write X = X1X≥t +X1X<t ≥ t1X≥t, hence taking the expectation we get the result.

Exercice 15. Show that a non-negative random variable X that can be written as Y g(X) where g is a non-increasing
function satisfy P (X ≥ t) ≤ E[Y ]g(t)

t .

Exercice 16. Show that for any p′ > p ≥ 1, we have

E
[
|X|p1|X|≥t

]
≤ t1−

p′
p E
[
|X|p

′
]

A direct corollary of Markov inequality is the following so called Bienaymé-Tchebychev inequality.

Corollary 3. For any real random variable X, we have that for any positive t, P (|X − E [X] | ≥ t) ≤ Var(X)
t2 .

Proof. Apply the Markov’s inequality for the non-negative random variable (X − E [X])2.

The idea behind Bienaymé-Tchebychev inequality is somehow generic in the theory of concentration inequalities. The
upcoming transformation of the random variable X replaces the transformation X → (X −E [X])2 of the precedent proof
the transform x→ exp(λx) which depends on a parameter λ that is optimized at some step in the proof. The function

λ ≥ 0 7→ ΨZ(λ) = logE [exp(λZ)]

is called the Cramér-Chernoff transform of Z. The dual function Ψ∗Z is given by

Ψ∗Z(t) = sup
λ≥0

(λt−ΨZ(λ))

and is called Fenchel-Legendre transform. Following the path of the proof of Bienaymé-Tchebychev’s inequality, we
obtain (after optimization in λ) the following corollary.

Corollary 4. For any real valued random variable Z, we have that

P (Z ≥ t) ≤ exp (−Ψ∗Z(t))

for any t > 0.

Comments It is clear that ΨZ(0) = 0 which implies directly that Ψ∗Z(t) ≥ 0 as it is a suprema of a set containing 0.
When E [Z] exists, Jensen’s inequality implies that ΨZ(t) ≥ λE [Z]. Hence, when t ≤ E [Z], we have that λt−ΨZ(λ) ≤ 0
and Ψ∗Z(t) = 0. This result is then empty when t ≤ E [Z]. For that specific reason, we will usually center the random
variable Z (i.e. E [Z] = 0 is assumed at the cost of changing Z into Z − E [Z]). Furthermore, when E [Z] = 0, λ ≤ 0 and
t ≥ 0, another use of Jensen’s inequality gives λt−ΨZ(λ) ≤ 0 and then

Ψ∗Z(t) = sup
λ∈R

(λt−ΨZ(λ))

Proof. For any λ ≥ 0, using Markov’s inequality for the non-negative random variable eλZ and by the monotonicity of the
exponential,

P (Z ≥ t) ≤ e−λtE
[
eλZ

]
= e−(λt−ΨZ(λ)).

Now, using the fact that the probability on the left hand side is not depending on the parameter λ ≥ 0, we finally have
that

P (Z ≥ t) ≤ inf
λ≥0

e−(λt−ΨZ(λ)) = e−Ψ∗Z(t).
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Chapter 8

Convergence of empirical processes

8.1 Introduction
The simple convergences given by LLN and CLT,

Xn
a.s.−→ E [X] or

√
n(Xn − E [X])

(d)−→ N
(
0, σ2

)
gives that for any fixed function f in a set of functions F ,

1

n

n∑
i=1

f(Xi)
a.s.−→ E [f(X)] and

1√
n

n∑
i=1

(f(Xi)− E [f(X)])
(d)−→ N

(
0, σ2

f

)
.

Many statistical contexts need to deal with the case when the function f is actually random and possibly dependent on the
values of the random variables X1, . . . , Xn. This case comes naturally when one needs a control of the empirical quantity
1
n

∑n
i=1 f̂(Xi) for an estimator f̂ drawn on the sample.

8.2 Examples

8.2.1 Education vs Employment
In our model a population of individuals X1 = (Y1, Z1), . . . , Xn = (Yn, Zn) is such that Yi ∈ {0, 1} represents the fact for
individual i to be employed (value 1) and Zi ∈ R represents the level of education. We are interested in understanding
the relation of dependence between education and employment summarized in the following function,

F0(z) = P (Y = 1|Z = z) .

A natural hypothesis to impose on the function F0 is to be non-decreasing in z as (normally) a higher level of education
gives more access to employment. Let

Λ1 = {F : R→ [0, 1], F is non decreasing}

a set of functions that satisfy the same conditions than F0. A natural estimator for F0 is the maximum likelihood estimator
defined as

F̂n = argmaxf∈Λ1

{
n∑
i=1

(
Yi logF (Zi) + (1− Yi) log(1− F (Zi))

)}
Denoting by Q the distribution of the random variable Z. A measure of the quality of this estimator can be given by

‖F̂n − F0‖Q =

(∫
(F̂n(z)− F0(z))2dQ(z)

)1/2

.

The tools developed later in this chapter can be applied to get ‖F̂n − F0‖Q = OP (n−1/3).
One may choose to impose some extra assumptions on the objective function by defining

Λ2 =

{
F : R→ [0, 1], 0 ≤ dF

dz
(z) ≤M, F is concave.

}
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In this context, it will be possible to show later in this chapter that ‖F̂n−F0‖Q = OP (n−2/5). Finally, if one is interested
in a parametric case and defines

Λ3 =

{
F : R→ [0, 1], F (z) = F0(θz), θ ∈ R and F0(x) =

ex

1 + ex

}
.

In this case, ‖F̂n − F0‖Q ≤ C|θ̂n − θ0| = OP (n−1/2).

8.2.2 Theoretical convergence of maximum likelihood estimators for densities
Assume that we are provided with a set of densities (with respect to a given measure µ)

{pθ : θ ∈ Θ}
to which belongs a density pθ0 . The statistician is provided with a sample X1, . . . , Xn of common distribution pθ0 . A
suitable notion of distance for this problem is the so-called Hellinger distance h given by

h(p, q) =

(
1

2

∫
(p1/2 − q1/2)2dµ

)1/2

.

This distance is controlled by the Kullback-Leibler divergence (which is not properly a distance) K that is defined by

K(p, q) =

∫
log

(
p(x)

q(x)

)
p(x)dµ(x).

Note that the integrand is continuous (and takes the value 0) on the frontier of the support of p, hence no problems of
integration occur in this case. Obviously, the K(p, q) = +∞ if q is not absolutely continuous with respect to p.

Proposition 14. We have that K(p, q) ≥ 0 and that h2(p, q) ≤ 1
2K(p, q).

Proof. At the cost of reducing the set of integration to the support of p, we can assume that p(x) > 0 and q(x) > 0. A
simple function study shows that ∀v > 0, we have

log(v) ≤ v − 1 and
1

2
log(v) ≤ v1/2 − 1

Hence,

K(p, q) =

∫
log

(
p

q

)
pdµ ≥

∫ (
q

p
− 1

)
pdµ =

∫
qdµ−

∫
pdµ = 1− 1 = 0

1

2
K(p, q) =

∫
1

2
log

(
p

q

)
pdµ ≥

∫ (
1− q1/2

p1/2

)
pdµ = 1−

∫
p1/2q1/2dµ =

1

2

(∫
pdµ+

∫
qdµ−

∫
2p1/2q1/2dµ

)
= h2(p, q)

The maximum likelihood estimator is given by

pθ̂n = argmin
θ∈Θ

n∑
i=1

log

(
pθ0(Xi)

pθ(Xi)

)
where the right hand side can be interpreted as the empirical version of the Kullback-Leibler divergence. By definition of
the estimator, we have

0 ≥ 1

n

n∑
i=1

log

(
pθ0(Xi)

pθ̂n(Xi)

)
=

1

n

n∑
i=1

log

(
pθ0(Xi)

pθ̂n(Xi)

)
−K(pθ0 , pθ̂n) +K(pθ0 , pθ̂n).

Then

K(pθ0 , pθ̂n) ≤

∣∣∣∣∣ 1n
n∑
i=1

log

(
pθ0(Xi)

pθ̂n(Xi)

)
−K(pθ0 , pθ̂n)

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

log

(
pθ0(Xi)

pθ(Xi)

)
−K(pθ0 , pθ)

∣∣∣∣∣ .
But one already know that for any fixed θ ∈ Θ,

1

n

n∑
i=1

log

(
pθ0(Xi)

pθ(Xi)

)
−K(pθ0 , pθ) = OP (n−1/2).

Finally, one can see that if one is able to derive a uniform type of central limit theorem, one will be able to give the order
of magnitude of the convergence of K(pθ0 , pθ̂n) towards 0.

8.2.3 Metric entropy
We begin with the definition of the metric entropy in a general pseudo-metric space D.



Chapter 9

Uniform Central Limit Theorems

In this chapter, we derive central limit theorems that will be valid for empirical processes. Those can also be called uniform
central limit theorems. In all this chapter we take the notation

Zn =
{
Zn(f) =

√
n(Pnf − Pf) : f ∈ F

}
.

We also assume that a specific element f0 is of particular interest and define,

F(δ) = {f ∈ F : ‖f − f0‖ ≤ δ}.

39



40 CHAPTER 9. UNIFORM CENTRAL LIMIT THEOREMS



Chapter 10

Bootstrap

10.1 Definitions
Definition 5. Let g be a function PX −→ Rd. We define its bootstrap plug in version.
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Chapter 11

Birman and Solomjak theory

In this chapter, we derive the calculation leading to concrete calculations on the entropy of various sets of functions with
enough regularity. This theory is taken from the seminal paper [1].

11.1 Notations and definitions

11.1.1 Functional space Wα
p (∆) and Vβ(∆)

Let Qm be the m-dimensional half-open unit cube in Rm (i.e. 0 ≤ xi < 1, i = 1, . . . ,m). We denote by k = (k1, . . . , km)
a multi-index (∀i, ki is an non-negative integer), xk =

∏m
i=1 x

ki
i and |k| =

∑
ki. We denote by Dk the corresponding

diferencial operator given by

Dk =
∂|k|

∂xk1
1 . . . ∂xkmm

.

For a cube ∆ with edges parallel to the coordinate axes, p ≥ 1, α > 0 we denote by Wα
p (∆) the Sobolev space endowed

with its natural norm ‖ · ‖Wα
p (∆). We recall that for θ = α− bαc and u ∈Wα

p (∆),

‖u‖Wα
p (∆) = ‖u‖Lp(∆) + ‖u‖Lαp (∆)

where
‖u‖Lαp (∆) =

∑
|k|=α

∫
∆

|Dku|pdx

if α is an integer or

‖u‖Lαp (∆) =
∑
|k|=α

∫
∆

∫
∆

|Dku(x)−Dku(y)|p

|x− y|pθ+m
dxdy

otherwise. The semi-norm ‖ · ‖Lαp (∆), has a homogeneity property with respect to linear transformation of the cube. For
example, if one takes ∆ = x0 + hQm, then

‖u‖Lαp (∆) = hmp
−1−α‖u‖Lαp (Qm).

In the one dimensional case (∆ is then an interval), we will use the notion of function of bounded β-variation denoted by
Vβ(∆). Let β ≥ 1. We say that u ∈ Vβ(∆), if

‖u‖β
V 0
β (∆)

= sup

n∑
i=1

|u(xi)− u(xi−1)|β

is finite. The suprema is taken over all the possible finite sets of points x0 < x1 < · · · < xn in the interval ∆. Of course,
the set Vβ(∆) is a Banach space relatively to the norm

‖u‖Vβ(∆) = ‖u‖V 0
β (∆) + sup

x∈∆
|u(x)|.

11.1.2 Partitions Λ

In this section we consider partition of the cube Qm where the elements are also m-dimensional cubes, generally denoted
by Λ. We denote by |Λ| the number of cubes in this partition and Λ = {∆1, . . . ,∆|Λ|}. A elementary extension of the
partition Λ is a partition Λ′ obtained by dividing some cubes in Λ into 2m smaller cubes (by slicing in every dimension).
The notation Λ0 holds for the trivial partition.

43



44 CHAPTER 11. BIRMAN AND SOLOMJAK THEORY

Cube argument functions We define a non-negative function J on the half open cubes ∆ that is semiadditive from
below: For any partition of ∆ into smaller cubes ∆j ,∑

j

J(∆j) ≤ J(∆).

Let |∆| be the Euclidean volume of the cube ∆ and let a > 0. We define

ga(J,∆) = |∆|aJ(∆)

and the following function of a partition Λ
Ga(J,Λ) = max

∆∈Λ
ga(J,∆).

Slicing strategy One wants to track the minimal value of Ga given that the partitions considered have at most a certain
number of elements. In other words, one is looking to

Minimize Λ 7→ Ga(J,Λ) (11.1)
where |Λ| ≤ n.

One employs a strategy of successive divisions. The first step is to divide Qm into 2m cubes and call Λ1 the partition
obtained. Then one partition again the cubes for which ga(J,∆) is such that

ga(J,∆j) ≥ 2−maGa(J,Λ1)

into 2m smaller cubes. This last step is then repeated. This constructs a sequence Ta(J) = (Λi)i∈N of partitions such that
∆i+1 is an elementary extension of ∆i.

11.1.3 Two elementary lemmas
Lemma 7. Suppose that a cube ∆ in Qm is divided into cubes ∆j for j = 1, . . . , 2m. Then

max
j
ga(J,∆j) ≤ 2−maga(J,∆)

Proof. By the semiadditivity from below, we have that
∑
j J(∆j) ≤ J(∆). But for all j, |∆j |a = |∆|a2−ma and then the

maximum being upper bounded by the sum, we get the result.

Lemma 8. Let s ∈ N and let xj > 0, yj > 0 (j = 1, . . . , s) be numbers such that∑
j

xj ≤ 1,
∑
j

yj ≤ 1, xjy
a
j ≥ b (j = 1, . . . , s).

for some a > 0 and b > 0. Then b ≤ s−(a+1).

Proof. This is a classical optimization problem that one can tackle with Lagrange multipliers. Indeed, we look for max b
satisfying the conditions of the lemma. Then one has to find the unique critical point of

b, (xj)j , (yj)j , (λj)j , α, β 7→ b+
∑
j

λj(xjy
a
j − b) + α(1−

∑
j

xj) + β(1−
∑
j

yj)

One has to verify the 3s+ 3 equations
∑
j xj = 1 (L1)∑
j yj = 1 (L2)∑
j λj = 1 (L3)

,


xjy

a
j − b = 0 (L1,j)

λjy
a
j − α = 0 (L2,j)

aλjxjy
a−1
j − β = 0 (L3,j)

(j = 1, . . . , s).

For example from (L1,j), (L2,j) we get that λjb = αxj and then b = α together with λj = xj . In the same way, we get
that λj = yj . Consequently, the sequences (xj)j , (yj)j and (λj)j are stationary so that ∀j, xj = yj = λj = s−1. It gives
max b = s−(a+1) and the result follows.



Chapter 12

M-estimation

The M-estimation (M for maximum) is a commonly used technique in statistics to define estimators of the “best” kind for
a given problem. They are based on the minimization of some random criteria that measures the desired quality of the
estimation.

12.1 Introduction and notations
Let X1, . . . , Xn, X be i.i.d. random variables taking values in a set X of common distribution P . Let S denote the set of
parameters. In this chapter, S is assumed to be a subset of a metric set, so that it is possible to enroll S with a distance
d. A random criteria is a function

γn : S → R∗+
t 7→ γn(t) := γn(X1, . . . , Xn, t)

depending on the random variables X1, . . . , Xn.

Settings and M-estimator Once given the criteria γn, one is interested in finding one parameter s ∈ S that have the
best theoretical cost E [γn(s)]. The purpose of M-estimation is exactly to define a random point that we hope to be close.

Definition 6. We define the following notions.

1. Let s be the target parameter defined as
s ∈ argmint∈S E [γn(t)] .

2. We define the M-estimator based on the risk function as

ŝ ∈ argmint∈S γn(t).

3. The cost of choosing the parameter t is given by

R(t) = E [γn(t)]

and the risk of the estimator is the quantity R(ŝ).

It has to be stated somewhere that a M-estimator ŝ is, obviously, depending on the set of parameters S and of the form
of the random criteria γn

Empirical Measure Most of the time, the criteria γn(t) can be rewritten in the setting of empirical processes where a
sum of independent terms is considered. For any measure µ and any function f : X 7→ R integrable with respect to µ, we
define

µf = µ(f) =

∫
X
fdµ.

Obviously, for any function f : X 7→ R integrable with respect to P , we have

Pf = E [f(X)]

Pnf =
1

n

n∑
i=1

f(Xi)

where Pn = 1
n

∑n
i=1 δXi is called the empirical measure.
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12.2 Examples

In the following examples, we remark that the random criteria γn(t) takes the specific form Pnft for a good choice of ft.

Empirical mean and empirical median Estimating the mean and the median of a sample of random vectors taking
values in a set X = Rk can be seen as a problem of M-estimation. The parameters are also elements of Rk then we set
S = Rk.

• When γn(t) = Pnft where ft(x) = (y − t)2, the target parameter s is simply the expected value E [X].

• When ones uses ft(x) = |y − t|, the minimizer is just the (a) median of X.

Exercice 17. Show that the minimum of E
[
(Y − t)2

]
is attained for t = E [Y ] and show that E [|Y − t|] is attained for

t = Med(Y ).

Least square regression In this context, we assume that the space X takes the form X = Z × R for a measurable
space Z and that X = (Z, Y ) ∈ Z × R of law P and such that

Y = m(Z) + σ(Z)ε,

with E
[
Y 2
]
<∞ and σ(Z) ≥ 0. The noise term ε is suppose to be independent of Z and standardized (i.e. E [ε] = 0 and

E
[
ε2
]

= 1).

• The set of parameters is S = L2(P ) := {s : Z → R ; E
[
s2(Z)

]
<∞}.

• The cost function is γn(t) = Pnft where ft(x) = (y − t(z))2.

• The target m : z 7→ E [Y |Z = z] is called the regression function of Y by Z.

The estimator ŝ is the least square estimator (LSE).

Binary classification The binary classification deals with the problem of labeling a random variable Z by a number 0
or 1. The data points are, then, of the form Xi = (Zi, Yi) where Zi ∈ Z and Yi ∈ {0, 1}. Then X = Z × {0, 1} and,

• The set of parameters is S = {s : X → {0, 1} measurable}.

• The cost function is γn(t) = Pnft where ft(x) = 1y 6=t(z).

• The target s∗(z) = 1E[Y |Z=z]≥1/2 is called Bayes classifier.

The estimator ŝ is the binary classifier.

Maximum likelihood We assume that X has a density f with respect to a measure µ,

f =
dP

dµ

and that (log f)+ is integrable with respect to P . Then:

• The set of parameters is S = {s : X → R+ ;
∫
X sdµ = 1 and P (log s)+ <∞}.

• The cost function is γn(t) = Pnft where ft(x) = − log(s(x)).

• The target f is the density of X.

The estimator ŝ is then the maximum likelihood estimator (MLE).



12.3. THEORETICAL STUDY 47

Figure 12.1: An example of MLE done by hands.

12.3 Theoretical study

For simplicity, we derive the following study in the context seen above, where the cost function γn(t) takes the form of
Pnft. The choice of the form of the function ft depends on the statistical context. Hence the theoretical cost E [γn(t)]
takes the form Pft. When one wants to study the deviation between the target s defined as the minimizer of Pft and
the M-estimator ŝ defined as the minimizer of Pnft, it is a good idea to control the difference Pnft − Pft. This enters
naturally in the context of empirical process theory.

Definition 7. Let F be a subset of L1(P ). The functional

Φ: F → R
f 7→ Pnf − Pf

also denoted ((Pn − P )f)f∈F is called the empirical process over the class F .

This point of view is the one taken by numerous authors for a general study of M-estimators on metric sets of parameters.
The interested reader is advised to take a look at [7], [8] or [4].

12.3.1 Consistency of M-estimators

Bounding the excess risk As defined earlier, the quality of the M-estimator is measured by its risk R(ŝ). A first step
to prove the consistency of the estimator ŝ is to control the so-called excess risk

R(ŝ)−R(s).

The convergence towards 0 of R(ŝ)−R(s) is not directly linked to the convergence of ŝ towards s. Indeed, if the function
R has numerous local minimum then tracking the convergence of ŝ becomes hard even though one has R(ŝ)−R(s)→ 0 as
n→ +∞. In the literature, many author do not bridge this step and only look for the asymptotic behavior of the excess
risk of the estimator. If one wants to overcome this issue, several leads are possible. The most common one may be to
assume convexity or strong convexity.

Definition 8 (Strong convexity). Let µ > 0, U be a convex open subset of Rk and f : U ⊂ Rk → R be a differentiable
function. We say that a function is µ-strongly convex if one of the following equivalent conditions is verified.

1. f(y) ≥ f(x) +∇f(x)T (y − x) + µ
2 ‖x− y‖

2 for any x, y ∈ U .

2. The function g(x) = f(x)− µ
2 ‖x‖

2 is convex.

3. (∇f(x)−∇f(y))T (x− y) ≥ µ‖x− y‖.

Exercice 18. Prove the equivalences in Definition 8.
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The equivalences in Definition 8 still hold when f is assumed to have sub-gradients. See the details in [3, Section 9.1.2].
The other option is to assume that for a distance d defined on the set S of parameters, we have

ηd(t, s)2 ≤ R(t)−R(s), ∀t ∈ S

for a positive constant η. The power 2 in the previous inequality is arbitrary but is often chosen in the literature. In the
sequel, we do not comment more on this fact and focus on proving consistency results only for the excess risk R(ŝ)−R(s).
The following lemma encodes a crucial decomposition of the risk.

Lemma 9. Let ∀t ∈ S, Rn(t) = γn(t) and assume that is satisfies

sup
t∈S
|Rn(t)−R(t)| P−→ 0,

then R(ŝ)−R(s)
P−→ 0.

Proof. We have

0 ≤ R(ŝ)−R(s)

= [R(ŝ)−Rn(ŝ)] + [Rn(ŝ)−Rn(s)] + [Rn(s)−R(s)]

≤ [R(ŝ)−Rn(ŝ)] + [Rn(s)−R(s)]

≤ 2 sup
t∈S
|Rn(t)−R(t)| P−→ 0



Chapter 13

Model Selection

We are in the context when the quantity to estimate is some complex object such a graph, a function, etc... If we take the
case of density estimation as a generic example for the context, one has to determine a objective function inside a possibly
enormous set of functions (think to all continuous function from R to [0, 1] for example). Hence, a natural strategy is to
reduce the set of possible solution at the price of possibly deteriorating the quality of the estimation. We put it in context
in the following. This chapter is inspired from the thesis of Adrien Saumard [6].

13.1 Introduction
Let X1, . . . , Xn be i.i.d random variables taking values in a set X . Let S be a set (possibly very complex) of parameters
(DEFINE this). We also define a random criteria γn sometimes referred as contrast as a function of the data for measuring
the quality (DEFINE that) of a parameter t ∈ S. More concretely, let

γn : S → R∗+
t 7→ γn(t) := γn(X1, . . . , Xn, t)

be the cost (or risk) function. In many cases, the cost function takes the form of a sum of independent random quantities
γn(t) = n−1

∑
i c(Xi, t) in such a way that γn(t) can be rewritten in the context of empirical processes theory γn(t) (see

Definition REF). We, now, introduce the important vocabulary in the setting of model selection.

Definition 9. We define the following notions.

1. The empirical cost for a parameter t ∈ S is γn(t).

2. The cost or risk is E [γn(t)].

3. A subset S ⊂ S is called a model. When one has access to a class of such subsets (Sm)m∈M, we also call model the
index m of the model Sm.

4. Let s be the target parameter defined as
s ∈ argmint∈S E [γn(t)] .

It is the theoretical benchmark for the problem of optimizing the cost. For each model m ∈M we define the projected
target as a minimizer of the cost on the model Sm,

sm ∈ argmint∈Sm E [γn(t)] .

5. For each model m, we define the associated M-estimator based on the risk function as

ŝm ∈ argmint∈Sm γn(t).

6. Finally, among the modelsM we choose the optimal model for which the cost of its M-estimator is minimal,

m∗ ∈ argminm∈M E [γn(ŝm)] (13.1)

Question: If one have access to a class of models (Sm)m∈M, how can one choose a model m and an estimator s̃ as an
element of the model Sm such that it is a good estimator of s?
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Selecting among M-estimators In the definitions 5. and 6., we reduced the diversity of estimator we consider.
Indeed, we only assume that we construct a M -estimator corresponding to each model Sm. As a result, the estimator s̃
is to be chosen among the familly (ŝm)m∈M as we will developp further in the following.

Target model The model m∗ or Sm∗ give an associated estimator ŝm∗ having the best theoretical performance (in the
sense of (13.1)) among the class ofM -estimators (ŝm)m∈M. In that sense, sm∗ is the best estimator to estimate the target
s. However, it is not rigorously an estimator since it still depends on some parameter of the problem through m∗. This
comes from that the minimization in (13.1) uses the true mean operator.

Avoiding a confusion : Eγ [·] versus E [·] In the following, we will have to distinguish between two kind of alea. The
empirical cost is one source of randomness and an estimator in some model M gives another source. We attract the
attention of the reader on the fact that as a function of a (non-random) parameter t, E [γn(t)] =: Eγ [γn(t)] is no more
random. Then, when one considers a estimator ŝm,

Eγ [γn(ŝm)] is a random variable
E [γn(ŝm)] is a deterministic number

since the second quantity is simply the expected value of the random variable γn(ŝm). The reader has to be careful that
we do not have E [Eγ [γn(ŝm)]] = E [γn(ŝm)] but we obviously have that Eγ [γn(t)] = E [γn(t)] for any deterministic point
t ∈ S.

Loss functions In order to quantify the goodness of an estimator, one has to define a non-negative quantity that
quantifies the gap between an estimated parameter and s. In the literature, there are two natural and common choices.
We define the deterministic loss function `det of an estimator s̃ around the target point s by

`det(s̃, s) = E [γn(s̃)]− E [γn(s)] .

We define the random loss function `ran as

`ran(s̃, s) = Eγ [γn(s̃)]− E [γn(s)] .

In each section, we specify which loss is considered and we will use the generic notation ` for both cases since there will
not be confusion. Note that, for both cases, the projected target sm is a minimizer on Sm of `(t, s). At this point, it is
clear that a model Sm too “small” is not likely to embed properly the problem as the target s will be far from its closest
point in Sm and then one has to look for a rich enough model to hope to get a good estimator s̃ of the target.

Over-fitting At first sight, the question seems to be answered by a direct minimization of the empirical cost by

m̂ ∈ argminm∈M γn(ŝm) (13.2)

which will have the tendency to always choose the biggest (in the sense of inclusion) model Sm among the possibilities.
However, a “big” model have the tendency to suffer a negative bias. Indeed, calling γn(t) = γn(t)− Eγ [γn(t)] and using

Eγ [γn(ŝm)] = Eγ [γn(sm)] + Eγ [γn(ŝm)− γn(sm)]︸ ︷︷ ︸
≥0

where the operator Eγ only operates on γn and not on ŝm, and

γn(ŝm) = γn(sm)− (γn(sm)− γn(ŝm))︸ ︷︷ ︸
≥0

one can write γn(ŝm) = γn(sm)− (γn(sm)− γn(ŝm)). Since the point sm is not random, γn(sm) is centered (or without
bias). Nevertheless, the term γn(sm)− γn(ŝm) is non-negative and then

E [γn(ŝm)] ≤ 0. (13.3)

This can be interpreted as the fact that the minimization in (13.2) introduces a negative bias so that γn(ŝm) is too small
compared to its cost E [γn(ŝm)]. This occurs in the over-fitting phenomena using a model with too much details/parameters.

Practice 1. BUILD AN EXAMPLE TO COMPUTE OVERFITTING

Hence the term that control the bias of the over-fitted estimator is γn(sm) − γn(ŝm). This bias is controlled by the
complexity (the richer the more complex), of the model m chosen to build the estimator.
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Figure 13.1: A typical problem of underspecified (left) vs adapted (center) vs over-fitting (right)

13.1.1 A solution through penalization

A solution to overcome the issue of over-fitting (negative bias) is to correct the estimator by a slightly modified minimization
by adding a term of penalization of a model.

Definition 10. A penalization on the class of models (Sm)m∈M is a function pen :M→ R+. We allow pen(m) to be a
random variable depending on the data X1, . . . , Xn.

The new estimator is then defined as a minimizer of

m̂ ∈ argminm∈M{γn(ŝm) + pen(m)}. (13.4)

For clarity in the notations, from now on, we denote by s̃ the selected estimator using (13.4) estimator ŝm̂.

Ideal penalizations

We define the ideal penalizations

peniddet(m) = E [γn(ŝm)]− γn(ŝm) (13.5)

penid
ran(m) = Eγ [γn(ŝm)]− γn(ŝm) = −γn(ŝm). (13.6)

In practice, penid cannot be used to tune the estimator since it depends on theoretical quantities such that the true mean
of γn(ŝm). Assume for a second that we choose pen = peniddet, then it is clear that m̂ = m∗ and this choice would achieve
the prefect estimator ŝm∗ .

13.1.2 A good class of results: Oracle bounds

The purpose of this section is to define properly the form of the results that one may want to develop. One is usually
interested in proving that the estimator in question satisfy the same kind of guaranties than the best estimator provided
in the class (Sm)m∈M. We will give at least two different mathematical meaning of this sentence. Since the calculations
on `ran and `det are similar, we will give a unified notation ` for both loss functions and denote by E [·] the associated
expectation that is either E or Eγ depending on the case.

Oracle bounds We will be looking for bounds of the form

`(s̃, s) ≤ C inf
m∈M

`(ŝm, s) + Dev = C`(ŝm∗ , s) + Dev (13.7)

for C a positive constant. A result as (13.7) is called an oracle bound. In other words, we ask that the desired estimator
s̃ is not worse than a constant times the best theoretical choice ŝm∗ . The Equation (13.1) has to be understood as a
deterministic bound for `det and the term Dev is a deterministic deviation whereas, in the case `ran, the bound holds in
expectation or high probability and the deviation term is allowed to be a random quantity. Oracle bounds can also take
the form of

`(s̃, s) ≤ C inf
m∈M

(`(sm, s) + pen(m)) + Dev′ (13.8)

where the infimum describes the best possible projection on Sm weighed by the penalization term.
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A generic calculation We have, from (13.6), the following calculations

`(s̃, s) = E [γn(s̃)]−E [γn(s)]

= γn(s̃) + penid(m̂)−E [γn(s)]

= γn(s̃) + pen(m̂) + (penid−pen)(m̂)−E [γn(s)]

≤ γn(ŝm) + pen(m) + (penid−pen)(m̂)−E [γn(s)] (13.9)

The next step concerns the bound on γn(ŝm). It is actually possible to derive two kind of results that we detail in the
next two paragraphs. Each strategy lead to different form of oracle bounds.

First solution The first solution is to write γn(ŝm) as

γn(ŝm) = −penid(m) + E [γn(ŝm)] .

and then
`(s̃, s) ≤ `(ŝm, s) + (pen−penid)(m) + (penid−pen)(m̂) (13.10)

The goal of the penalization step is, then, to look for good approximation of the ideal penalization penid by pen over the
models m ∈M.

Second solution The second solution consists in bounding γn(ŝm) in a direct manner thanks to the definition of the
estimator ŝm. Starting again from (13.9) and using

γn(ŝm) ≤ γn(sm),

the bound on `(s̃, s) becomes

`(s̃, s) ≤ `(sm, s) + pen(m) + γn(sm) + (penid−pen)(m̂) (13.11)

We see that when one is able to find a penalization close to the ideal penalization, one can hope to get an oracle inequality
as (13.7). For example, if one can control uniformly the deviation between penid and pen with high probability,

penid(m) ≤ pen(m) ≤ penid(m) + C inf
m∈M

`(ŝm, s) (13.12)

we get
`(s̃, s) ≤ (1 + C) inf

m∈M
`(ŝm, s)

with high probability. An ideal context is when one is able to define a penalization such that, with high probability,

|pen(m)− penid(m)| ≤ ε inf
m∈M

`(ŝm, s) (13.13)

so that
`(s̃, s) ≤ 1 + ε

1− ε
inf
m∈M

`(ŝm, s)

which is asymptotically optimal if ε→ 0 as n→∞.
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Chapter 14

Extra definitions

14.0.1 Sumable familly
Definition 11. Let (E, ‖ · ‖) a normed vector space. We say that a family (ai)i∈I of elements of E is sumable if there
exists an element S of E such that ∀ε > 0, ∃Jε a finite subset of I such that ∀J finite ⊂ I,

J ⊇ Jε =⇒

∥∥∥∥∥∑
i∈J

ai − S

∥∥∥∥∥ ≤ ε.
Then S is unique and we call it the sum of the sumable family ai.

Proposition 15. If the elements ai are non-negative, then

(ai)i∈I is sumable ⇔ J>0 := {i ∈ I : ai 6= 0} is at most countable
and the serie

∑
i∈J>0

ai is convergent.

Proof. Simply note that for any ε > 0, the set {i : ai > 2ε} is finite since it is included in Jε. Then we have that

{i : ai 6= 0} =
⋃
n∈N
{i : ai >

1

n
}.

This is actually possible to adapt the proof to get the result for the general sequence (ai) where the result on the serie is
that it is commutatively convergent i.e. that any permutation of the terms lead to the same sum.
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Chapter 15

Functional Analysis

15.1 Lemmas

We give here the proofs of some technical results.

Lemma 10. Let a1, . . . , an and b1, . . . , bn be complex numbers such that ∀i, |ai| ≤ 1 and |bi| ≤ 1. Then

|a1a2 . . . an − b1b2 . . . bn| ≤
n∑
i=1

|ai − bi|.

Proof. It is possible to rewrite a1a2 . . . an − b1b2 . . . bn as

a1a2 . . . an − b1b2 . . . bn =a1a2 . . . an − a1a2 . . . an−1bn

+ a1a2 . . . an−1bn − a1a2 . . . an−2bn−1bn

+ . . .

+ a1b2 . . . bn − b1b2 . . . bn

Then
|a1a2 . . . an − b1b2 . . . bn| ≤ |an − bn|+ · · ·+ |a1 − b1|

since the complex numbers are all of modulus less or equal to 1.

Lemma 11. For any pair of positive numbers a and b, we have that for any p ≥ 1,

(a+ b)p ≤ 2p−1(ap + bp)

Proof. Use the convexity of x 7→ xp between the points a and b with λ = 1− λ = 1/2.

Lemma 12. For any complex z such that <(z) ≤ 0, we have

|ez − 1− z| ≤ |z|
2

2

Proof. By the Taylor-Young formula, we see that

|ez − 1− z| =
∣∣∣∣∫ 1

0

(t− 1)z2etzdt

∣∣∣∣ ≤ |z|2 ∫ 1

0

(1− t)dt =
|z|2

2

where we used that |etz| ≤ 1, by the fact that <(z) ≤ 0.

Lemma 13. Let I be an open interval of R and let c : I → R be a convex function. Then we have the following facts

a) c is continuous on I.

b) For all x ∈ I, c has a left derivative c′l(x) and a right derivative c′r(x) such that c′l(x) ≤ c′r(x).

c) Fix any v ∈ I then for all D ∈ [c′l(v), c′r(v)], we have that ∀x ∈ I, c(x) ≥ D(x− v) + c(v).
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Figure 15.1: Inequality (15.1)

d) There exists two sequences (an)n and (bn)n of reals such that

∀x ∈ I, c(x) = sup
n

(anx+ bn).

Proof. If one takes u < v < w elements of I, we have that

∆u,v ≤ ∆u,w ≤ ∆v,w where ∆x,y =
c(y)− c(x)

y − x
. (15.1)

It is obvious to deduce that ∆x,y is increasing in both x and y. Now let v0 ∈ (u,w) fixed. So

|C(v)− C(v0)| = |∆v0,v||v − v0| ≤ max{|∆v0,w|, |∆u,v0
|}|v − v0| −→

v→v0

0

and a) is proved. From (15.1), we prove that

c′l(v) = lim
u↑v

∆u,v ≤ lim
w↓v

∆v,w = c′r(v).

The limits exists since the limits are defined for increasing (resp. decreasing) and upper bounded (resp. lower bounded)
functions. Let D ∈ [c′l(v), c′r(v)] and let x ∈ I. If x ≥ v, we have that D ≤ c′r(v) ≤ ∆v,x = (c(x) − c(v))/(x − v). The
case x lev is obtained symmetrically. To prove d), we consider the point c) for all q ∈ I ∩Q where we choose for example
Dq = (c′l(q) + c′r(q))/2 and we define

f(x) = sup
q∈I∩Q

(Dq(x− q) + c(q)).

Now by density one can choose (qn)n a sequence of rationals in I such that qn → x. Then,

c(x) = lim
n→∞

(Dqn(x− qn) + c(qn)) ≤ sup
q∈I∩Q

(Dq(x− q) + c(q)) = f(x) ≤ c(x).

We have c = f and since I ∩Q is countable, one can renumerate the elements in a sequence.

15.2 Basic facts on integrable functions
Proposition 16. Let f ≥ 0 be an integrable function, then for any ε > 0, there exists δ > 0 such that

∀F ∈ B(R), P (F ) ≤ δ =⇒
∫
f(x)1f(x)∈F ≤ ε.

Proof. Assume that the conclusion is false, then, there exist ε0 and a sequence of sets (Fn)n such that

P (Fn) ≤ 2−n and
∫
f(x)1f(x)∈Fn > ε0.

Defining, F = lim supFn, we get from Borel-Cantelli lemma that P (F ) = 0. However, reverse Fatou lemma shows that∫
f(x)1f(x)∈F > ε0

but this is impossible since the integration of over a event of probability 0 is always 0. The absurdity of the assumption
gives the result.

Corollary 5. Let f ≥ 0 be an integrable function, then∫
f(x)1|f(x)|>tdx −→

t→∞
0.
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15.3 Basic properties and Fourier transform
Fact 1. The convolution between two measures given by

µ ? ν(A) =

∫
Rk×Rk

1x+y∈Adµ(x)dν(y)

is a probability measure.

Proof. Obviously, µ ? ν(Rk) = 1. Let A1, . . . , An, . . . be a countable family of disjoints elements of the borelian σ-algebra.
Then one has that

1∪i≥1Ai =
∑
i≥1

1Ai

which implies µ ? ν(∪i≥1Ai) =
∑
i≥1 µ ? ν(Ai), by linearity of the integral.

We recall proposition 7.

Proposition 17. For µ and ν two probability measures,

• ‖Fµ‖∞ ≤ 1.

• F(µ ? ν) = (Fµ)× (Fν).

Proof. The first fact is obvious since the integrand has a modulus bounded by 1. For the second point, we see that for
any integrable function f , ∫

Rk
f(z)d(µ ? ν)(z) =

∫∫
Rk×Rk

f(x+ y)dµ(x)dν(y).

This can be seen by approximation of positive functions by simple functions. Then

F(µ ? ν)(ξ) =

∫
Rk

exp(−iz · ξ)d(µ ? ν)(z)

=

∫∫
Rk×Rk

exp(−i(x+ y) · ξ)dµ(x)dν(y)

=

(∫
Rk

exp(−iz · ξ)dµ(z)

)(∫
Rk

exp(−iy · ξ)dν(y)

)
= (Fµ(ξ))(Fν(ξ))

Modulus of continuity Let g : Rk → R be a function. Its modulus of continuity w(g, x, δ) in x is a function taking
values in [0,+∞] defined by

w(g, x, δ) = sup
y∈Rk:‖x−y‖≤δ

|g(y)− g(x)|.

By definition, it can be seen that
g is continuous at x⇔ lim

δ→0
w(g, x, δ) = 0.

Regularizing sequence We say that a sequence (φn)n∈N of functions on Rk is a regularizing sequence if

1. For all n, φn ≥ 0.

2. For all n,
∫
Rk φn(x)dx = 1.

3. For every ε > 0,
∫
B(0,ε)c

φn(x)dx −→
n→∞

0.

Proposition 18. Let 1 ≤ p, q < ∞ such that p−1 + q−1 = 1. Let φn be a regularizing sequence of functions in Lq(Rk).
Then, for any f ∈ Lp(Rk), we have that

f ? φn −→
n→∞

f (in Lp(Rk)).

To prove that fact, we begin with a stronger case.

Lemma 14. For a function g in L∞(Rk) continuous at x, we get

g ? φn(x) −→
n→∞

g(x)
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Proof. Using the fact that φn is of total mass 1 by definition, we can write for any δ > 0,

g ? φn(x)− g(x) =

∫
Rk

[g(x− y)− g(x)]φn(y)dy

=

∫
B(0,δ)

[g(x− y)− g(x)]φn(y)dy +

∫
B(0,δ)c

[g(x− y)− g(x)]φn(y)dy

≤ w(g, x, δ) + 2‖g‖∞
∫
B(0,δ)c

φn(y)dy

Now, by continuity, take δ > 0 sufficiently small to get w(g, x, δ) ≤ ε/2 and then take n large enough to have the second
term smaller than ε/2 as well. This finishes the proof.

We are now able to prove Proposition 18.

Proof of Proposition 18. Since the family of regularizing functions φn are in Lq(Rk), the functions f ?φn are well defined.
Then by Jensen’s inequality,

|(f ? φn)(x)− f(x)| ≤
∫
Rk
|f(x− y)− f(x)|pφn(y)dy.

Integrating in x both sides and using Fubini’s theorem (everything is positive) we get that

‖(f ? φn)− f‖pp ≤
∫
Rk
‖fy − f‖pp φn(y)dy, (15.2)

where fy holds for the function x 7→ f(x − y). Define g(y) = ‖fy − f‖pp, then it is a continuous bounded function such
that g(0) = 0. Hence, looking at the right and side of Equation (15.2) as g ?φn(0) we get, by Lemma 14, that it converges
to 0 as n→ +∞.

15.4 Distribution functions and simple functions
Definition 12. A simple function is a function f such that there exists a finite number n of real values λ1, . . . , λn and of
measurable sets A1, . . . , An such that

f =

n∑
i=1

λi1Ai

Definition 13. A function defined on an finite interval I = [a, b] is said to be absolutely continuous on I, if ∀ε > 0,
∃δ > 0 such that ∀n and every finite familly of intervals (α1, β1), (α2, β2), . . . , (αn, βn) in I such that

n∑
i=1

(βi − αi) < δ,

we have,
n∑
i=1

|f(βi)− f(αi)| < ε

This definition implies the important,

Theorem 9. Let I = [a, b] and f : I → R a non decreasing and absolutely continuous function. Then, f is almost surely
differentiable on I, is in L1(R) and

f(x)− f(a) =

∫ x

a

f ′(t)dt ∀x ∈ [a, b].

Proof. This can be found in Rudin [5, Theorem 7.18]

We have the useful lemma:

Lemma 15. Let µ be a probability measure on X and let f :→ [0,+∞] a measurable function. Let φ : [0,+∞)→ [0,+∞]
be a monotone function, absolutely continuous on [0, T ] for any T < +∞ and such that φ(0) = 0, then∫

X
(φ ◦ f)dµ =

∫ +∞

0

µ{f > t}φ′(t)dt (15.3)
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Proof. Since φ is absolutely continuous, it is almost surely differentiable. Now take a simple function f defined on X and
let Et = {x ∈ X : f(x) > t}. The set Et is measurable since it is a finite union of rectangles, then

µ{f > t} = µ(Et) =

∫
X
1f(x)>tdµ(x)

and, by Fubini, ∫ +∞

0

µ{f > t}φ′(t)dt =

∫
X
dµ(x)

∫ +∞

0

1f(x)>t φ
′(t)dt.

But the right hand side integral can be re-written in∫ +∞

0

1f(x)>t φ
′(t)dt =

∫ f(x)

0

φ′(t)dt = φ(f(x)).

We end the proof by a classical density argument to insure the validity of (15.3) for any measurable function.

A special case of Lemma 15 is the following result.

Corollary 6. For any non negative random variable X,

E [X] =

∫ +∞

0

P (X > t) dt.

We draw the attention of the reader to the fact that the integral can also be written∫ +∞

0

P (X ≥ t) dt (15.4)

since integration on the open (0,+∞) or on [0,+∞) are equivalent for the Lebesgue measure dt.

Proof. Apply Lemma 15 for f, φ both equal to the identity function.

15.5 Dominated convergence theorem
We recall rapidly the dominated convergence theorem that we reduce into (DOM) anywhere else in the notes. In the sequel
of this section, we denote by L1(X , µ) the set of integrable functions on the measure space (X , µ). When convenient, we
adopt the notation

µ(f) =

∫
X
f(x)dµ(x).

15.5.1 Dominated convergence
Theorem 10 (Dominated convergence (DOM)). Let (fn)n∈N be a sequence of measurable functions. Assume that for any
x ∈ X , fn(x) → f(x) for f a measurable function. Assume also that there exists a non-negative function g ∈ L1(X , µ)
such that,

|fn(x)| ≤ g(x), ∀x ∈ X ,∀n ∈ N.

Then,
fn

L1−→ f in L1(X , µ),

and then ∫
X
fn(x)dµ(x) −→

n→∞

∫
X
f(x)dµ(x)

Proof. This theorem is a direct consequence of Fatou’s lemma. Taking the limit in inequations, we see that |f | ≤ g and
then |fn − f | ≤ 2g. The reverse Fatou Lemma gives

lim supµ(|fn − f |) ≤ µ(lim sup |fn − f |) = µ(0) = 0.

This implies the convergence L1. Then, by Jensen inequality,

|µ(fn)− µ(f)| ≤ µ(|fn − f |) −→
n→∞

0.
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Lemma 16 (Scheffé). Assume that fn and f are non-negative functions in L1(X , µ) and suppose that fn → f a.e. Then∫
|fn − f |dµ −→

n→∞
0 if and only if

∫
fndµ −→

n→∞

∫
fdµ

Proof. The direct sense is obvious. For the reverse, assume that

µ(fn) −→
n→∞

µ(f).

First, one can notice that (fn−f)− ≤ f −fn ≤ f by non-negativity of fn and then (DOM) implies that µ((fn−f)−)→ 0.
For the positive part,

µ((fn − f)+) = µ((fn − f)1fn≥f ) = µ(fn)− µ(f)− µ((fn − f)1fn<f )

and |µ((fn − f)1fn<f )| ≤ |µ((fn − f)−)| → 0. Then, µ((fn − f)+)→ 0 and

µ(|fn − f |) = µ((fn − f)+) + µ((fn − f)−)→ 0.

Scheffé Lemma have an important consequence for density functions associated with a probability measure P .

Corollary 7. The almost sure convergence of densities imply convergence in L1(X , P ).

Proof. Use Scheffé Lemma with the ’if’ part since ∀n, P (fn) = 1 = P (f).

The dominated convergence theorem is useful when the random variables are uniformly bounded by some constant K. In
this particular case, the weaker convergence (in probability) can be assumed instead of the almost sure convergence. The
following result will be used in the proof of Theorem 2.

Lemma 17 (Bounded convergence). Assume that Xn
P−→ X and that there exists a positive constant K such that almost

surely, ∀n, |Xn| ≤ K, then
E [|Xn −X|] −→

n→∞
0.

Proof. The random variableX is also bounded in probability byK. Indeed, |X| ≤ |X−Xn|+|Xn| ≤ |X−Xn|+K, we have
that P (|X| > K + ε) ≤ P (|Xn −X| > ε)→ 0. Hence, P (|X| > K + ε) = 0,∀ε > 0 which means that P (|X| ≤ K) = 1.
By conditioning,

E [|Xn −X|] = E
[
|Xn −X|1|Xn−X|>ε

]
+ E

[
|Xn −X|1|Xn−X|≤ε

]
≤ 2KP (|Xn −X| > ε) + ε.

15.5.2 Fatou Lemma
In the following, we denote by an ↑ a, the simultaneity of an → a and an is increasing. (GIVE A GOOD LOCATION)

Lemma 18 (Fatou). For a sequence of non-negative measurable function (fn)n∈N, we have that,

µ(lim inf fn) ≤ lim inf µ(fn).

A simple way to remember the order between
∫
and lim inf, one of my teacher gave me the simple trick based on the lexical

ordering : il ≤ li where l stands for the limit and i stands for the integral. This is interpreted as
∫

lim inf ≤ lim inf
∫
.

Proof. Define the sequence (gk)k by,
gk = inf

n≥k
fn.

The sequence is well defined as a infimum of a sequence of non-negative numbers. By definition of (gk)k,

gk ↑ lim inf fn,

and for any n ≥ k, fn ≥ gk, so that µ(fn) ≥ µ(gk) and then,

µ(gk) ≤ inf
n≥k

µ(fn).

Since (gk) is non-decreasing, we can apply (MON) to get that

µ(lim inf fn) = µ(lim
k
gk)

(MON)
= lim

k
µ(gk) ≤ lim

k
inf
n≥k

µ(fn) = lim inf µ(fn).
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Lemma 19 (Reverse Fatou). Let (fn)n be a sequence of measurable functions such that, for any n, fn ≤ g with µ(g) < +∞,
then

µ(lim sup fn) ≥ lim supµ(fn)

Proof. Apply Fatou Lemma for (g − fn)n.

15.6 The Monotone convergence theorem

15.6.1 Monotone convergence for measures
We begin with the monotone properties of measures. For measurable sets (Fn)n and F , the notation Fn ↑ F means
∀n, Fn ⊆ Fn+1 and

⋃
Fn = F and Fn ↓ F means ∀n, Fn+1 ⊆ Fn and

⋂
Fn = F .

Lemma 20 (Monotone convergence for measures). Let (X , µ) be a measure space, then

1. If (Fn)n are measurable sets such that Fn ↑ F , then µ(Fn) ↑ µ(F ).

2. If (Gn)n are measurable sets such that Gn ↓ G and there exists k such that µ(Gk) <∞, then µ(Gn) ↓ µ(G).

Proof. For 1., define G1 = F1 and Gn := Fn+1\Fn and remark that these are disjoints sets. As the measure of a countable
union of disjoints sets equals the sum of the measures of the sets, we get

µ(Fn) = µ(

n⋃
i=1

Gi) =

n∑
i=1

µ(Gi) =

∞∑
i=1

µ(Gi) ↑ µ(F ).

For 2., use 1. with Fn = Gk\Gk+n, F = Gk\G and decompose µ(Gk) = µ(G) + µ(Gk\G).

15.6.2 Technical lemmas
Doubly monotone convergence

Lemma 21 (Doubly monotone sequences). Let (an,k)n∈N,k∈N be a double sequence of non-negative numbers. Assume that
a is doubly monotone, which means

1. ∀k ∈ N, (an,k)n is non-decreasing and ∃a∞,k ∈ [0,+∞], an,k −→
n→∞

a∞,k.

2. ∀n ∈ N, (an,k)k is non-decreasing and ∃an,∞ ∈ [0,+∞], an,k −→
k→∞

an,∞.

Then,
lim
k
a∞,k = lim

n
an,∞.

Proof. By a one-to-one transformation (by Arctan for example) of the sequence, we can assume it uniformly bounded.
Let

a(1)
∞ = lim

k
a∞,k and a(2)

∞ = lim
n
an,∞.

Now let ε > 0. Let k large enough, thus n = n(k) large enough to get

an,k > a∞,k − ε > a(1)
∞ − 2ε.

But a(2)
∞ ≥ an,∞ ≥ an,k which finally gives a(2)

∞ ≥ a(1)
∞ . Repeating the argument symmetrically, we finally get the equality

of the two limits.

Staircase approximation

In the following result, we expose a way to define a sequence of simple functions increasingly converging to a given function.

Definition 14. Let αp : [0,+∞]→ [0,+∞] given by

αp(x) =

 0 if x = 0
(i− 1)2−p if (i− 1)2−p < x ≤ i2−p ≤ p (∀i ∈ N)
p if x > p

This function is left-continuous (i.e., if x→ x0 with x ≤ x0, then αp(x)→ αp(x0)).

Proposition 19. The sequence (αp ◦ f)p is a sequence of simple functions such that αp ◦ f ↑ f .
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Figure 15.2: An example of the staircase transformation

A simpler case: Simple functions

Lemma 22. Let (fn)n be a sequence of non-negative simple functions and f a non-negative measurable function such that
fn ↑ f , then

µ(fn) ↑ µ(f).

Proof. Step 1 : (f = 1A) Assume that fn ↑ 1A, for A measurable. We obviously have that µ(fn) ≤ µ(1A). Moreover, the
sequence of real numbers µ(fn) is non-decreasing. Let ε > 0 and An = {x ∈ A : fn(x) > 1 − ε}. We have that An ↑ A
and then, by Lemma 20, µ(An) ↑ µ(A). But, by definition,

(1− ε)1An ≤ fn

so that (1− ε)µ(An) ≤ µ(fn). Since we took an arbitrary ε, it holds that

µ(1A) = µ(A) ≤ lim inf µ(fn) ≤ lim supµ(fn) ≤ µ(1A)

Step 2 : (f a simple functions) Let f be of the form f =
∑
αk1Ak , for a finite number of Ak. We apply the previous case

to the convergence of
α−1
k 1Akfn ↑ 1Ak

Step 3 : (Approximating f) We show that there exists a sequence fk of simple functions satisfying both µ(fk) ↑ µ(f) and
fk ↑ f . By definition of the Lebesgue integral,

µ(f) = sup{µ(h) : h is simple and 0 ≤ h ≤ f}.

Hence, there exists a sequence (hk) such that µ(hk) ↑ µ(f). But using the staircase function αp, we can construct a
sequence gp := αp ◦ f such that gp ↑ f . Now define

fk = max{gk, h1, . . . , hk}.

Since (gk)k is non-decreasing, fk is also non-decreasing and µ(hk) ≤ µ(fk) ≤ µ(f) and so holds the convergence µ(fk)→
µ(f).
Step 4 : (Uniqueness of the limit) Let fn ↑ f and gk ↑ f two non-decreasing sequences of simple functions. We show that
limµ(fn) = limµ(gk). Define hn,k = min{fn, gk} and note that it is a doubly increasing sequence. Moreover,

hn,k −→
n→∞

gk and hn,k −→
k→∞

fn.

Since the limits gk, fn and hn,k are simples functions, we can apply Step 2 and get

µ(hn,k) −→
n→∞

µ(gk) and µ(hn,k) −→
k→∞

µ(fn)

which allows us to apply Lemma 21 to the sequence µ(hn,k)n,k and we get the uniqueness of the limit.
Step 5 : (Putting all together) Take fk defined in step 3, then µ(fk) ↑ µ(f). But, by hypothesis, we have that fn ↑ f ,
then by the uniqueness of the limit µ(fn) ↑ µ(f) = limµ(fk).
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Monotone convergence theorem

Theorem 11 ((MON)). Let (fn)n and f non-negative measurable functions such that fn ↑ f . Then

µ(fn) ↑ µ(f).

Proof. By the staircase approximation, we construct a double index sequence (αp ◦ fn)n,p of simple functions such that

αp ◦ fn −→
p→∞

fn and αp ◦ fn −→
p→∞

αp ◦ f

where the first fact holds by the definition of αp and the second holds by the left-continuous property of αp. Obviously,
the convergences occur in an increasing manner. Then applying Lemma 22, we get

µ(αp ◦ fn) −→
p→∞

µ(fn) and µ(αp ◦ fn) −→
p→∞

µ(αp ◦ f)

which occurs again in an increasing manner. Now applying Lemma 21 for the sequence (µ(αp ◦ fn))n,p, we get

µ(fn) ↑ lim
p→+∞

µ(αp ◦ f) = µ(f).
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Chapter 16

Basic probability results

We state here the important Borel-Cantelli lemma.
For a sequence of events (En)n we denote {En i.o.} for the event

{En i.o.} = {ω : ∀m,∃n(ω) ≥ m such that ω ∈ En(ω)}.
= {ω : ω ∈ En for infinitely many n}

Lemma 23 (Borel-Cantelli). For a sequence of events (En)n such that
∑
n≥0 P (En) < +∞. Then

P (lim supEn) = P (En i.o.) = 0

Proof. Defining Gm :=
⋃
n≥mEn and G := lim supEn so that we have Gm ↓ G. Then for any m ∈ N, we have

P (G) ≤
Lemma 20

P (Gm) ≤
∑
n≥m

P (En) .

When we let m→ +∞,
∑
n≥m P (En) −→

n→∞
0 and then P (G) = 0.

Lemma 24 (Jensen Inequality). Let φ be a convex function on an open interval I of R of the form (a, b). For a random
variable X such that

E [|X|] < +∞, P (X ∈ I) = 1, E [|φ(X)|] < +∞.

Then we have that
φ(E [X]) ≤ E [φ(X)] .

Proof. Let (an)n and (bn)n defined in Lemma 13, in order to have φ(x) = supn∈N(anx+ bn). Then, for any n,

E [φ(X)] ≥ anE [X] + bn.

But since the inequality is valid for all n, the supn is also bounded by E [φ(X)] which gives the result.

16.0.1 Convergence in probability

The following results are stated for random variables taking values in R. At the simple cost of replacing |X − Y | by the
quantity d(X,Y ) defined in Definition 2, we can generalize the following results to random vectors in Rk.

Lemma 25. Let (Xn)n be a sequence of random variables such that

∀ε > 0,

+∞∑
n=0

P (|Xn −X| ≥ ε) < +∞

then Xn
a.s.−→ X.

Proof. Let En,ε := {ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε} and let Aε := lim supEn,ε. The assumption of Borel-Cantelli lemma is
fulfilled and thus P (Aε) = 0. But

Acε = {ω ∈ Ω : ∃n0,∀n ≥ n0, |Xn(ω)−X(ω)| < ε}

67
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is then of probability 1. Let εi = 2−i and let

Λ :=

∞⋂
i=0

Acεi .

The set Λ is a countable intersection of events of probability one then is also of probability 1. Now for any ω ∈ Λ, we
have that Xn(ω)→ X(ω). This is exactly Xn

a.s.−→ X.

We see directly that the assumption of Lemma 25 implies the convergence in probability of the sequence Xn towards X.
The convergence of probability does not implies convergence almost sure as seen by Example 2.

Lemma 26. Let (Xn)n be a sequence of random variables such that Xn
P−→ X. Then there exists a sub-sequence (Xnk)k

such that Xnk
a.s.−→ X.

Proof. We will extract a sub-sequence of the sequence (Xn)n which verifies the assumption of Lemma 25. Let εk = 2−k.
The convergence in probability implies that P (|Xn −X| > εk) −→

n→∞
0 then ∃nk ∈ N such that

P (|Xnk −X| > εk) ≤ 1

k2
.

Let ε > 0. There exists k0 ∈ N such that ∀k ≥ k0, εk < ε, then

{|Xnk −X| > ε} ⊂ {|Xnk −X| > εk}.

We verify the assumption of Lemma 25,

+∞∑
k=0

P (|Xnk −X| > ε) ≤
k0−1∑
k=0

P (|Xnk −X| > ε)︸ ︷︷ ︸
<+∞

+

+∞∑
k=k0

P (|Xnk −X| > εk)︸ ︷︷ ︸
summable

< +∞

and then Xnk −X
a.s.−→ 0.

16.0.2 From convergence in P to a.s.
In this section, we give a simple argument that permits to bridge the gap between convergence in probability and conver-
gence a.s. This is doable when the random variables are upper bounded by a common variable.

Lemma 27 (Kolmogorov Truncation). Let X1, . . . , Xn, . . . be random vectors such that there exists X a positive random
variable with E [X] <∞ and ∀n ∈ N∗, ‖Xn‖ ≤ X. For all n ∈ N∗, define

Yn :=

{
Xn if ‖Xn‖ ≤ n
0 if ‖Xn‖ > n

Then,

i) P (Xn = Yn eventually) = 1. [PRECISE THIS]

ii) ‖
∑
n≥1 n

−2Var (Yn) ‖ <∞.

Proof. For proving i), we use Borel-Cantelli’s lemma (Lemma 23) and the fact that∑
n≥1

P (Yn 6= Xn) =
∑
n≥1

P (‖Xn‖ > n) ≤
∑
n≥1

P (X > n) ≤ E [X] <∞.

For ii), we see that∥∥∑
n≥1

n−2Var (Yn)
∥∥ ≤∑

n≥1

n−2E
[
‖Yn‖2

]
≤
∑
n≥1

E
[
‖Xn‖21‖Xn‖≤n

]
n2

≤
∑
n≥1

E
[
‖Xn‖21‖Xn‖≤n1X≤n

]
n2

+
∑
n≥1

E [1X>n]

≤
∑
n≥1

E
[
X2

1X≤n
]

n2
+ E [X] = E

X2
∑

n≥max(1,X)

1

n2

+ E [X]

≤ 2E

X2
∑

n≥max(1,X)

1

n
− 1

n+ 1

+ E [X] = 2E
[

X2

max(1, X)

]
+ E [X] ≤ 3E [X] <∞
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This later result allows to derive a implication between convergence in probability and convergence a.s. for sums of random
variables.

Lemma 28. Let X1, . . . , Xn, . . . be random vectors such that there exists X a positive random variable with E [X] < ∞
and ∀n ∈ N∗, ‖Xn‖ ≤ X. We assume that

Sn =
1

n

n∑
i=1

Xn
P−→ µ.

Then,
Sn

a.s.−→ µ.

Proof. Since the sequence (Xi)i is uniformly bounded by X which is integrable, we have that it is U.I. (see Proposition
1) and so is (Sn)n. Hence, one has that

1

n

n∑
i=1

E [Xn] −→
n→+∞

µ.

Now, using the Yi of Lemma 27, we get that

1

n

n∑
i=1

Yi −
1

n

n∑
i=1

Xi
a.s.−→ 0 and also

1

n

n∑
i=1

E [Yn] −→
n→+∞

µ (by DOM).

Then, it only remains to show that n−1
∑
Yi − E [Yi]

a.s.−→ 0. The second point of Lemma 27 allows us to use Lemma 25
together with Bienaymé-Chebyshev inequality to get the conclusion.

Remark 2. Notice that the same trick can be used to show that

sup
t∈T

1

n

n∑
i=1

Xi,t
P−→ 0 ⇔ sup

t∈T

1

n

n∑
i=1

Xi,t
a.s.−→ 0

under the uniform assumption ∀i, ‖Xi,t‖ ≤ Xt such that E [supXt] < ∞. In this case, point i) of Lemma 27 will be
replaced by P (∀t ∈ T , Xi,t = Yi,t eventually) = 1.
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Chapter 17

Carathéodory theorem

17.1 Measure set theory

17.1.1 Special class of sets

Algebras For a set Ω, we define an algebra as a collection Σ0 of subsets of Ω such that

• Ω ∈ Σ0.

• If F ∈ Σ0 then F c ∈ Σ0. (Stable under complementation)

• If F1, F2 ∈ Σ0 then F1 ∪ F2 ∈ Σ0. (Stable under finite union).

σ-algebras A collection Σ of subsets of Ω is a σ-algebra if

• Σ is an algebra.

• F1, F2, . . . , Fn, · · · ∈ Σ then
⋃
n∈N Fn ∈ Σ. (Stable under countable union)

In the context of σ-algebras, we omit the index 0 in the notation of Σ. This is to strengthen the fact that σ-algebras are
the main purpose of measure theory.

Comments 1. Note that it is always possible to assume that the sequence of elements are disjoints since, one may replace
the sequence by G1 = F1, G2 = F2\F1, . . . , Gn = Fn\

⋃n−1
i=1 Fi, . . . which is such that⋃

n∈N
Fn =

⋃
n∈N

Gn.

π-systems A collection Σ0 of subsets of Ω is a π-system if

• F1, F2 ∈ Σ0 then F1 ∩ F2 ∈ Σ0. (Stable under finite intersection)

It is direct to see that any σ-algebra is an algebra and any algebra is a π-system.

λ-sets For a function λ : Σ0 → [0,+∞] on the algebra Σ0 and such that λ(∅) = 0, we say that a element L ∈ Σ0 is a
λ-set if

∀K ∈ Σ0, λ(L ∩K) + λ(Lc ∩K) = λ(K). (17.1)

σ-algebras generated For a class C of subsets of Ω, we define the σ-algebra generated by C and denoted by σ(C) as
the smallest (for the inclusion) σ-algebra that contains C. In more precise words, σ(C) is the intersection (show that it is
still a σ-algebra) of all σ-algebras that contain C.

17.1.2 Definition of measures

As in the previous section, we define special classes of functions Σ0 → [0,+∞] adapted to each context of subsets defined
above.
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Additivity Let Σ0 be an algebra. A function µ0 : Σ0 → [0,+∞] is said to be finitely additive (or additive) if

• µ0(∅)=0.

• For any pair of disjoints sets F1, F2 ∈ Σ0, we have

µ0(F1 ∪ F2) = µ0(F1) + µ0(F2).

Measure Let Σ be an σ-algebra. A function µ : Σ→ [0,+∞] is said to be a measure (or countably additive) if

• µ(∅)=0.

• For any sequence of disjoints sets F1, F2, . . . , Fn, · · · ∈ Σ, we have

µ(
⋃
n∈N

Fn) =
∑
n∈N

µ(Fn).

All together the triple Ω,Σ, µ is called a measure space. The measure µ is said to be finite if µ(Ω) < +∞. mu is said to
be σ-finite if there exists a sequence Ω1, . . . ,Ωn, . . . of elements of Σ such that⋃

n∈N
Ωn = Ω and µ(Ωn) < +∞,∀n ∈ N.

A probability space is a measure space Ω,Σ, µ where µ(Ω) = 1 and the measure µ is called a probability measure.
We usually adopt the notation P instead of µ for a probability measure.
A more general notion of measure is the so-called outer measures that are a building step to construct important examples
of measures such that Lebesgue measure.

Outer measures Let Σ be a σ-algebra. A function µ0 : Σ→ [0,+∞] is called a outer measure if it satisfies

• µ0(∅) = 0.

• (increasing) For any two sets F1, F2 ∈ Σ such that F1 ⊆ F2,

µ0(F1) ≤ µ0(F2).

• (countable sub-additivity) For any sequence F1, . . . , Fn, . . . of elements of Σ,

µ0(
⋃
n∈N

Fn) ≤
∑
n∈N

µ0(Fn).

17.1.3 Extension theorems
Proposition 20 (λ-sets form an algebra). Let L0 be the set of all λ-sets of an algebra Σ0. Then the set L0 is an algebra
and the restriction λL0

: L0 → [0,+∞] is additive.

Proof. We verify the three axioms of an algebra.
Full set Ω is obviously a λ-set.
Complementary By the symmetry of the definition of a λ-set, its complementary is trivially a λ-set.
Stability by finite intersection Let L1 and L2 two elements of L0, let L = L1 ∩L2 and let K ∈ Σ0. Since L1, L2 are λ-sets,
we get that

λ(L ∩K) + λ(Lc1 ∩ L2 ∩K) = λ(L2 ∩K) (with L1 and L2 ∩K)

λ(L2 ∩K) + λ(Lc2 ∩K) = λ(K) (with L2 and K)

λ(Lc ∩K) = λ(L2 ∩ Lc1 ∩K) + λ(Lc2 ∩K) (with L2 and Lc ∩K)

where we remark that Lc ∩ L2 = L2 ∩ Lc1 and Lc ∩ Lc2 = Lc2. Now summing up the three equalities leads to the desired
equation for L.
λ is finitely additive Let L1 and L2 two disjoints λ-sets. Using Equation (17.1) for L1 and K = L1 ∪ L2, we get

λ(L1 ∪ L2) = λ((L1 ∪ L2) ∩ L1) + λ((L1 ∪ L2) ∩ Lc1) = λ(L1) + λ(L2)

which finishes the proof.
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The following lemma explores the case of σ-algebras instead of simple algebras. Its stronger structure permits to deduce
that µ0 is a measure at the cost of assuming that it is already a outer measure.

Lemma 29 (Carathéodory Lemma). Let λ be a outer measure on (Ω,Σ). The class L of all the λ-sets in Σ is a σ-algebra
on which the outer measure λ is a measure.

Proof. Thanks to the result of Proposition 20, we already know that λ is additive. Hence, the only two things that remains
to show is the countable additivity for µ0 and the stability under countable union for L. Let L1, . . . , Ln, . . . be a sequence
of disjoints elements in L. Let L =

⋃
n≥1 Ln. By the fact that any finite union of elements in L is again in L, we get that

for Mn =
⋃n
k=1 Lk and any K ∈ Σ,

λ(K) = λ(Mn ∩K) + λ(M c
n ∩K) ≥ λ(Mn ∩K) + λ(Lc ∩K)

since Lc ⊆M c
n. But then, using Proposition 20 again leads to the following inequality

λ(K) ≥
n∑
k=1

λ(Lk ∩K) + λ(Lc ∩K) (∀n ≥ 1),

and taking the limit and the countable sub-additivity we finally get

λ(K) ≥
∑
k≥1

λ(Lk ∩K) + λ(Lc ∩K) ≥ λ(L ∩K) + λ(Lc ∩K).

On the other side, the sub-additivity of λ implies,

λ(K) ≤ λ(L ∩K) + λ(Lc ∩K)

and then the two previous inequalities imply that all the inequalities written above are actual equalities. In particular,
this shows that L belongs to L (and then L is a σ-algebra) and taking K = L we see that

λ(L) =
∑
k≥1

λ(Lk).

17.1.4 Carathéodory theorem
The following theorem is an angular stone to construct all the measures that are commonly used in probabilistic theory.

Theorem 12. Let Ω be a set, and let Σ0 be an algebra on Ω. We associate to Σ0 its generated σ-algebra Σ = σ(Σ0). Let
µ0 be a countably sub-additive map µ0 : Σ0 → [0,+∞]. Then, there exists a measure µ : Σ→ [0,+∞] such that

µ|Σ0
= µ0.

Moreover, if µ0(Ω) < +∞, then the extension µ is unique.

Remark Many authors do assume that the map µ0 is countably additive in Theorem 12. It is actually not needed
as seen in the proof below. Besides, it is usually of similar complexity to show countable sub-additivity or countable
additivity. As a corollary result, we get that µ0 is in fact countable additive as a restriction of µ.

Proof. We consider the largest σ-algebra possible G that contain all the subsets of Ω. We define a function λ : G → [0,+∞]
by

λ(G) = inf
∑
n≥1

µ0(Fn) (∀G ∈ G)

where the infimum is taken over all the sequences (Fn)n of elements of Σ0 such that G ⊆
⋃
n≥1 Fn.

Fact 1 : λ is an outer measure on (Ω,G)
It is direct to see that λ(∅) = 0. It is also direct to get the increasing property since the definition of λ involves an inf.
For the sub-additivity, let (Gn)n be a sequence of elements of G such that λ(Gn) < +∞ (otherwise there is nothing to
prove). Then, for any n ≥ 1 and ε > 0, it is possible to find a sequence (Fn,k) of elements of Σ0 such that

Gn ⊆
⋃
k≥1

Fn,k and
∑
k≥1

µ0(Fn,k) < λ(Gn) + ε2−n.
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Figure 17.1: A sum up of the classes of importance in measure theory represented as inclusion of sets for sub-classes. On
the bottom side, the definitions of different types of classes correspond to definitions for non-negative valued function on
the top. The inclusions represents sub-classes and bold notions are enlightened to show their major importance. Finally,
dashed lines are reserved for minor notions.

Let G =
⋃
n≥1Gn ⊆

⋃
n,k≥1 Fn,k so that (Fn,k)n,k is a sequence of elements of Σ0 containing G. Then,

λ(G) ≤
∑
n,k≥1

µ0(Fn,k) <
∑
n≥1

λ(Gn) + ε

and since, ε is arbitrary, we get the sub-additivity.

Fact 2 : λ is a measure on (Ω,L)
We define L the class of λ-sets on the class G. By Carathéodory Lemma 29, we get that L is a σ-algebra and λ is indeed
a measure on L.

Fact 3 : λ = µ0 on (Ω,Σ0)
Let F ∈ Σ0. We have directly that λ(F ) ≤ µ0(F ) (pick a silly sequence). For the λ(F ) ≥ µ0(F ) part, pick any sequence
(Fn)n of elements of Σ0 with an union containing F and define the sequence of disjoints sets (En)n, by

E1 := F1, En = Fn\(
n−1⋃
k=1

Fk).

Then, by the countable sub-additivity of µ0, we get

µ0(F ) = µ0(
⋃
n≥1

(F ∩ En)) ≤
∑
n≥1

µ0(F ∩ En) ≤
∑
n≥1

µ0(En) ≤
∑
n≥1

µ0(Fn).

Now, taking the infimum on both sides gives µ0(F ) ≤ λ(F ) hence the equality.

Fact 4 : Σ0 ⊆ L
Let F ∈ Σ0 and K ∈ G. We will show that F is a λ-set. By the sub-additivity of λ, we already have that

λ(K) ≤ λ(F ∩K) + λ(F c ∩K).
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For any ε > 0, there exists a sequence (Fn)n of elements of Σ0 such that K ⊆
⋃
n≥1 Fn and∑

n≥1

µ0(Fn) < λ(K) + ε.

But, we also have ∑
n≥1

µ0(Fn) =
∑
n≥1

µ0(F ∩ Fn) +
∑
n≥1

µ0(F c ∩ Fn) ≥ λ(F ∩K) + λ(F c ∩K).

Since, ε is arbitrary, we get that λ(K) ≥ λ(F ∩K) + λ(F c ∩K) which concludes the fact.

Fact 5 : Definition of µ
By the fact 2,3 and 4, we get that Σ0 ⊆ Σ := σ(Σ0) ⊆ L. But since we already defined λ, a measure extending µ0 on L,
it suffices to define µ as the restriction of λ on Σ.
Fact 6 : Uniqueness of µ
In the case of µ(Ω) <∞, we use Theorem 13 to conclude.

A important side result of the proof that we gave here is a general construction of an outer measure on any algebra.

Canonical outer measure To any algebra Σ0 defined on Ω, one can construct an outer measure by the formula

λ(G) = inf
∑
n≥1

µ0(Fn) (∀G ∈ P(Ω)) (17.2)

where the infimum is taken over all the sequences (Fn)n of elements of Σ0 such that G ⊆
⋃
n≥1 Fn. Such an outer measure

is named the canonical outer measure associated to Σ0. But one has to be careful since a little structure (namely the
sub-additivity) on µ0 is needed to have that λ and µ0 coincide on Σ0.

17.1.5 Uniqueness of extension
In this section, we treat the case of the uniqueness of the extension of measures. In fact, it is sufficient to define the
values of the measure on a smaller set than the σ-algebra Σ. The adapted notion is the π-systems. From the definitions,
it is clear that σ-algebras are a stronger structure than π-systems. What is lacking from a π-system to be a σ-algebra is
precisely the topic of d-systems (for Dynkin) defined in the following.

d-systems Let Ω be a set and D be a collection of subsets of Ω having the three following properties:

• Ω ∈ D.

• For any two elements A,B ∈ D with A ⊆ B, we have B\A ∈ D.

• For any sequence (An)n of elements of D such that An ↑ A, then A ∈ D.

Such a set D is called a d-system. For a class of subsets Σ0, we denote by d(Σ0) the generated d-system as the set
given by the intersection of all d-systems containing Σ0.

Proposition 21. Let Σ be a class of subsets of Ω. Then Σ is a σ-algebra if and only if it is a π-system and a d-system.

Proof. We only need to prove the if part since, obviously, a σ-algebra is a π-system and a d-system. Assume that Σ is
a π-system and d-system. If F ∈ Σ, then F c = Ω\F ∈ Σ. Also for F1, F2 ∈ Σ, we have F c1 ∩ F c2 ∈ Σ (π-system) and
F1∪F2 = Ω\(F c1 ∩F c2 ) ∈ Σ, so that Σ is an algebra. Now let (Fn)n be a sequence in Σ and Gn = F1∪ · · ·∪Fn. Obviously,
Gn ↑

⋃
Fk and then

⋃
Fk ∈ Σ.

It is now the time to give the important result of the section.

Lemma 30 (Dynkin). Let Σ0 be a π-system. Then

d(Σ0) = σ(Σ0).

Proof. It is obvious that we have d(Σ0) ⊆ σ(Σ0) so it is enough to show that d(Σ0) is a π-system. For that purpose, define

D1 := {A ∈ d(Σ0) : ∀B ∈ Σ0, A ∩B ∈ d(Σ0)}

and
D2 := {A ∈ d(Σ0) : ∀B ∈ d(Σ0), A ∩B ∈ d(Σ0)}.
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We have D2 ⊆ D1 ⊆ d(Σ0) and we will show equality of these sets. First, we see that Σ0 ⊆ D1 (since Σ0 is a π-system).
Thus, it is enough to show that D1 is a d-system. To see that, write for A1 ⊆ A2 two elements of d(Σ0) and B ∈ Σ0,

(A2\A1) ∩B = (A2 ∩B)\(A1 ∩B)

and for a sequence An ↑ A in d(Σ0),
(An ∩B) ↑ (A ∩B).

The set D1 being a d-system, we have that D1 = d(Σ0). By definition of D1, this last fact insures that Σ0 ⊆ D2. But
as before, D2 is actually a d-system then D2 = Σ0 and this shows that d(Σ0) is a π-system then a σ-algebra. Finally,
d(Σ0) = σ(Σ0).

We are now ready to prove the following uniqueness result.

Theorem 13 (Uniqueness of extension). Let Ω be a set such that Σ0 is a π-system on Ω. We define Σ = σ(Σ0). Let µ1

and µ2 be two measures on (Ω,Σ) such that

• µ1(Ω) = µ2(Ω) <∞.

• ∀A ∈ Σ0, µ1(A) = µ2(A).

Then,
µ1 = µ2 as measures on (Ω,Σ).

Proof. Let D := {A ∈ Σ : µ1(A) = µ2(A)}. The goal is to show that D is a d-system. For any A,B ∈ D with A ⊆ B, we
have that

µ1(B\A) = µ1(B)− µ1(A) = µ2(B)− µ2(A) = µ2(B\A)

where the equality holds since we are only dealing with finite values. Then B\A ∈ D. Let An ↑ A where An ∈ D, then

µ1(A) =↑ limµ1(An) =↑ limµ2(An) = µ2(A)

where we used Lemma 20. Thus A ∈ D and D is a d-system. We have Σ0 ⊆ D then, using Dynkin’s Lemma, we get that
D = Σ.

Remarks The assumption on the finiteness of µ(Ω) is important and cannot be avoided. The assumption that µ1 and
µ2 are two measures is also important to use Lemma 20. The conclusion also fails to hold if µ1 and µ2 are only assumed
to be finitely additive.

17.1.6 Definiton of the Lebesgue measure
The construction of Lebesgue measure is an important step to understand the classical construction of Skorokod for the
existence of random variables of given distribution function. There is actually two options to define a measure based on a
restriction of outer measures. The first one is to use Carathéodory extension theorem directly and then the only thing to
check is the sub-additivity of µ0. The second is to define the outer measure directly and to show that the outer measure
defined in Equation (17.2) equals µ0 on the algebra. We follow the second option here. The interested reader may find
the other option in [9, A.1.9].

Definition of Leb on ((0, 1],B((0, 1]))

We define an algebra,

Σ0 := {A = (a1, b1] ∪ · · · ∪ (ar, br] : r ≥ 1, ai ≤ bi ≤ ai+1 ≤ bi+1,∀i}.

as the set of all finite disjoint unions of semi-open intervals. It is easy to see that σ(Σ0) = B((0, 1]). We can easily define
a countably additive map µ0 on Σ0 by

µ0(A) :=

r∑
i=1

(bi − ai)

that we will extend into Leb. It is easy to see that µ0 is well defined and finitely additive. Let λ be the canonical outer
measure defined on Σ0. In our context,

λ(A) = inf

{
r∑
i=1

(bi − ai) : A ⊆
r⋃
i=1

(ai, bi], r ≥ 1

}
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where the infimum is on the sets of the form of a disjoint union
⋃r
i=1(ai, bi] that contain A. By Theorem 12, the outer

measure λ is in fact a measure on σ(Σ0). At this point, we could consider that the work is done since a measure has
been constructed but it is still not obvious that for A ∈ Σ0, µ0(A) = λ(A). By finite additivity it is enough to show that
λ((a, b]) = b− a. By construction, we already have that

λ((a, b]) ≤ b− a

but for any finite disjoint union of sets
⋃r
i=1(ai, bi] such that

(a, b] ⊆
r⋃
i=1

(ai, bi],

we have by simple calculation that

b− a ≤
r∑
i=1

(bi − ai)

which implies that b− a ≤ λ((a, b]). This reasoning is also applicable to show that λ({a}) = 0.

17.2 A random variable of given law
The law (or the probability distribution) of a random variable X on the probability triple (Ω,Σ, P ) is the image measure
LX = P ◦X−1. For a given L(X) it is always possible to define a probability triple and a random variable that correspond
by taking X = id and P = LX . This purely theoretical definition is not that interesting since it does not give any extra
information. A more interesting question arises when one imposes a probability triple at the origin (usually (R,B(R),Leb)).
This new question is tackled by Skorohod construction.

17.2.1 Real valued random variables
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